运筹学学报 ›› 2021, Vol. 25 ›› Issue (2): 144-148.doi: 10.15960/j.cnki.issn.1007-6093.2021.02.012

•   • 上一篇    

关于求解变分不等式问题的2-次梯度外梯度算法收敛性的一个补注

屈彪1,*(), 徐伟1, 王新艳1   

  1. 1. 曲阜师范大学运筹学研究院, 山东日照 276826
  • 收稿日期:2019-11-19 出版日期:2021-06-15 发布日期:2021-05-06
  • 通讯作者: 屈彪 E-mail:qubiao001@163.com
  • 作者简介:屈彪 E-mail: qubiao001@163.com
  • 基金资助:
    山东省自然科学基金(ZR2018MA019);国家自然科学基金(11271226)

A remark on the convergence of the two-subgradient extragradient algorithm for the variational inequality problem

Biao QU1,*(), Wei XU1, Xinyan WANG1   

  1. 1. Institute of Operations Research, Qufu Normal University, Rizhao 276826, Shandong, China
  • Received:2019-11-19 Online:2021-06-15 Published:2021-05-06
  • Contact: Biao QU E-mail:qubiao001@163.com

摘要:

Yair Censor,Aviv Gibali和Simeon Reich为求解变分不等式问题提出了2-次梯度外梯度算法。关于此算法的收敛性,作者给出了部分证明,有一个问题:由算法产生的迭代点列能否收敛到变分不等式问题的一个解上,没有得到解决。此问题作为一个公开问题在文章“Extensions of Korpelevich's extragradient method for the variational inequalityproblem in Euclidean space”(Optimization,61(9):1119-1132,2012)中被提出。在这篇简短的补注性文章中,对所提出的问题给出了答案:由算法产生的迭代点列能收敛到变分不等式问题的一个解上。给出2-次梯度外梯度算法的全局收敛性的一个完整证明,证明了从任意起始点开始,由算法产生的迭代点列都能收敛到变分不等式问题的一个解上。

关键词: 变分不等式问题, 2-次梯度外梯度算法, 收敛性

Abstract:

The two-subgradient extragradient algorithm was proposed by Yair Censor, Aviv Gibali and Simeon Reich for solving the variational inequality problem. A question about the convergence of this algorithm, that is, whether the sequences generated by the algorithm converge to a solution of the variational inequality problem, was raised as an open problem in the paper "Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space" (Optimization, 61(9): 1119-1132, 2012). Our goal in this short remark is to give an answer to this question and give an integrated proof of the full convergence of the algorithm.

Key words: variational inequality problem, the two-subgradient extragradient algorithm, full convergence

中图分类号: