Alexander G J, Baptista A M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model [J]. Management Science, 2004, 50: 1261-1273. Alexander G J, Baptista A M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model [J]. Management Science, 2004, 50: 1261-1273. Alexander G J, Baptista A M, Yan S. Mean-variance portfolio selection with `at-risk' constraints and discrete distributions [J]. Journal of Banking & Finance, 2007, 31: 3761-3781. Alexander G J, Baptista A M, Yan S. Mean-variance portfolio selection with `at-risk' constraints and discrete distributions [J]. Journal of Banking & Finance, 2007, 31: 3761-3781. Benati S, Rizzi R. A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem [J]. European Journal of Operational Research, 2007, 176: 423-434. Beraldi P, Ruszczynski A. The probabilistic set-covering problem [J]. Operations Research, 2002, 50: 956-967. Bonami P, Lejeune M A. An exact solution approach for portfolio optimization problems under stochastic and integer constraints [J]. Operations Research, 2009, 57: 650-670. Boyd S P, Vandenberghe L. Convex Optimization [M]. Cambridge: Cambridge University Press, 2004. Calafiore G C, Campi M C. The scenario approach to robust control design [J]. IEEE Transactions on Automatic Control, 2006, 51: 742-753. Charnes A, Cooper W W, Symonds G H. Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil [J]. Management Science, 1958, 4: 235-263. Chen W, Sim M, Sun J, Teo C P. From CVaR to uncertainty set: Implications in joint chance-constrained optimization [J]. Operations Research, 2010, 58: 470-485. Cheon M S, Ahmed S, Al-Khayyal F. A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs [J]. Mathematical Programming, 2006, 108: 617-634. Dentcheva D, Martinez G. Augmented Lagrangian method for probabilistic optimization [J]. Annals of Operations Research, 2011. DOI: 10.1007/s10479-011-0884-5. Dentcheva D, Prekopa A, Ruszczynski A. Concavity and efficient points of discrete distributions in probabilistic programming [J]. Mathematical Programming, 2000, 89: 55-77. Gaivoronski A A, Pflug G. Value at risk in portfolio optimization: Properties and computational approach [J]. Journal of Risk, 2005, 7: 1-31. Henrion R. Structural properties of linear probabilistic constraints [J]. Optimization, 2007, 56: 425-440. Henrion R, Strugarek C. Convexity of chance constraints with independent random variables [J]. Computational Optimization and Applications, 2008, 41: 263-276. Hong L J, Yang Y, Zhang L. Sequential convex approximations to joint chance constrained programs: A monte carlo approach [J]. Operations Research, 2011, 59: 617-630. Kucukyavuz S. On mixing sets arising in chance-constrained programming [J]. Mathematical Programming, 2012, 132: 31-56. Lagoa C M, Li X, Sznaier M. Probabilistically constrained linear programs and risk-adjusted controller design [J]. SIAM Journal on Optimization, 2005, 15: 938-951. Lejeune M, Noyan N. Mathematical programming approaches for generating p-efficient points [J]. European Journal of Operational Research, 2010, 207: 590-600. Lejeune M, Noyan N. Mathematical programming approaches for generating p-efficient points [J]. European Journal of Operational Research, 2010, 207: 590-600. Lejeune M A, Ruszczynski A. An efficient trajectory method for probabilistic inventory production-distribution problems [J]. Operations Research, 2007, 55: 378-394. Luedtke J, Ahmed S. A sample approximation approach for optimization with probabilistic constraints [J]. SIAM Journal on Optimization, 2008, 19: 674-699. Luedtke J, Ahmed S, Nemhauser G L. An integer programming approach for linear programs with probabilistic constraints [J]. Mathematical Programming, 2010, 122: 247-272. Nemirovski A, Shapiro A. Convex approximations of chance constrained programs [J]. SIAM Journal on Optimization, 2006, 17: 969-996. Nemirovski A, Shapiro A. Scenario approximations of chance constraints [M]//Calafiore G, Dabbene F, editors. Probabilistic and Randomized Methods for Design Under Uncertainty, Berlin: Springer, 2006, 3-47. Nocedal J, Wright S J. Numerical Optimization [M]. Berlin: Springer, 1999. Prekopa A. Probabilistic programming [M]//Ruszczynski A, Shapiro A, editors. Stochastic Programming, Handbooks in Operations Research and Management Science. Amsterdam: Elsevier Science, 2003: 267-351. Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J]. Journal of Risk, 2000, 2: 21-42. Ruszczynski A. Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra [J]. Mathematical Programming, 2002, 93: 195-215. Saxena A, Goyal V, Lejeune M A. MIP reformulations of the probabilistic set covering problem [J]. Mathematical Programming, 2010, 121: 1-31. Zheng X J, Sun X L, Li D, Cui X T. Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs [J]. European Journal of Operational Research, 2012, 221: 38-48. |