1 |
Agnetis A , Mirchandani P B , Pacciarelli D , et al. Scheduling problems with two competing agents[J]. Operations Research, 2004, 52, 229- 242.
doi: 10.1287/opre.1030.0092
|
2 |
Baker K , Smith J C . A multiple criterion model for machine scheduling[J]. Journal of Scheduling, 2003, 6 (1): 7- 16.
doi: 10.1023/A:1022231419049
|
3 |
Cheng T C E , Ng C T , Yuan J J . Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[J]. Theoretical Computer Science, 2007, 362 (1-3): 273- 281.
|
4 |
Cheng T C E , Ng C T , Yuan J J . Multi-agent scheduling on a single machine with max-form criteria[J]. European Journal of Operational Research, 2008, 188 (2): 603- 609.
doi: 10.1016/j.ejor.2007.04.040
|
5 |
Agnetis A , Gawiejnowicz S , Soukhal A , et al. Multiagent Scheduling: Models and Algorithms[M]. Berlin: Springer, 2014.
|
6 |
Lee K , Choi B C , Leung Y T , et al. Approximation algorithms for multi-agent scheduling to minimize total weighted completion time[J]. Information Processing Letters, 2009, 109 (16): 913- 917.
doi: 10.1016/j.ipl.2009.04.018
|
7 |
万龙. 有关单机两代理排序问题的两个结果[J]. 运筹学学报, 2015, 19 (2): 54- 60.
doi: 10.15960/j.cnki.issn.1007-6093.2015.02.006
|
8 |
张玉忠. 工件可拒绝排序问题综述[J]. 运筹学学报, 2020, 24 (2): 111- 130.
doi: 10.15960/j.cnki.issn.1007-6093.2020.02.009
|
9 |
高强, 鲁习文. 带有拒绝的单机和同型机排序问题[J]. 运筹学学报, 2014, 18 (4): 1- 10.
doi: 10.3969/j.issn.1007-6093.2014.04.001
|
10 |
Zhao K J , Lu X W . Two approximation algorithms for two-agent scheduling on parallel machines to minimize makespan[J]. Journal of Combinatorial Optimization, 2016, 31 (1): 260- 278.
doi: 10.1007/s10878-014-9744-y
|
11 |
Brucker P , Gladky A , Hoogeveen H , et al. Scheduling a batching machine[J]. Journal of Scheduling, 1998, 1 (1): 31- 54.
doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
|
12 |
Cheng T C E , Yuan J J , Yang A F . Scheduling a batch-processing machine subject to precedence constraints, release dates and identical processing times[J]. Computers & Operations Research, 2001, 33 (8): 685- 690.
|
13 |
He C , Xu C , Lin H . Serial-batching scheduling with two agents to minimize makespan and maximum cost[J]. Journal of Scheduling, 2020, 23 (1): 609- 617.
|
14 |
何程, 韩鑫鑫. 同时最优化时间表长与总完工时间的双代理单机序列分批排序问题[J]. 工程数学学报, 2020, 37 (4): 487- 494.
|
15 |
Sabouni M , Jolai F . Optimal methods for batch processing problem with makespan and maximum lateness objectives[J]. Applied Mathematical Modelling, 2010, 34 (2): 314- 324.
doi: 10.1016/j.apm.2009.04.007
|
16 |
Li S S , Yuan J J . Unbounded parallel-batching scheduling with two competitive agents[J]. Journal of Scheduling, 2012, 15 (5): 629- 640.
doi: 10.1007/s10951-011-0253-x
|
17 |
井彩霞, 吴瑞强, 贾兆红. 并行分批排序综述[J]. 运筹与管理, 2020, 29 (1): 223- 239.
|
18 |
Mor B , Mosheiov G . Single machine batch scheduling with two competing agents to minimize total flowtime[J]. European Journal of Operational Research, 2011, 215 (3): 524- 531.
doi: 10.1016/j.ejor.2011.06.037
|
19 |
Feng Q, Yu Z Y, Shang W P. Pareto optimization of serial-batching scheduling problems on two agents[C]//The 2011 International Conference on Advanced Mechatronic Systems, 2011: 165-168.
|
20 |
Graham R L , Lawler E L , Lenstra J K , et al. Optimization and approximation in deterministic sequencing and scheduling: a survey[J]. Annals of Discrete Mathematics, 1979, 5 (1): 287- 326.
|
21 |
Simchi-Levi D . New worst-case results for the bin-packing problem[J]. Naval Research Logistics, 1994, 41 (4): 579- 585.
doi: 10.1002/1520-6750(199406)41:4<579::AID-NAV3220410409>3.0.CO;2-G
|
22 |
Chen R , Yuan J J , Gao Y . The complexity of CO-agent scheduling to minimize the total completion time and total number of tardy jobs[J]. Journal of Scheduling, 2019, 22 (5): 1- 13.
|