1 |
von Nuemann J , Morgenstern O . Theory of Games and Economic Behavior[M]. Princeton: Prentice-Hall, 1944.
|
2 |
Nash J . Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36, 48- 49.
|
3 |
Nash J . Noncoopertive games[J]. Annals of Mathematics, 1951, 54, 286- 295.
doi: 10.2307/1969529
|
4 |
Nash J. N-person nonooprative games[D]. Princeton: Princeton University, 1950.
|
5 |
Blume L. Population Games[R]. New Mexico: Santa Fe Institute, 1996.
|
6 |
Sandholm W H . Population Games and Evolutionary Dynamics[M]. Cambridge: MIT Press, 2010.
|
7 |
Selten R . Reexamination of the perfectness concept for equilibrium points in extensive game[J]. International Journal of Game Theory, 1975, 4, 25- 55.
doi: 10.1007/BF01766400
|
8 |
Myerson R . Refinements of the Nash equilibrium concept[J]. International Journal of Game Theory, 1978, 7, 73- 80.
doi: 10.1007/BF01753236
|
9 |
仲崇轶. 群体博弈的有限理性问题及演化动力学研究[D]. 贵阳: 贵州大学, 2020.
|
10 |
Wu W T , Jiang J H . Essential equilibrium points of n-person noncoopertive games[J]. Scientia Sinica, 1962, 11, 1307- 1322.
|
11 |
Jiang J H . Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games[J]. Scientia Sinica, 1963, 7, 951- 964.
|
12 |
Kohlberg E , Mertens J . On the strategic stability of equilibria[J]. Economitrica, 1986, 54, 1003- 1037.
doi: 10.2307/1912320
|
13 |
俞建. 对策论中的本质平衡[J]. 应用数学学报, 1993, 16, 153- 157.
|
14 |
Yu J . Essential equilibria of n-person noncoopertive games[J]. Journal of Mathematical Economics, 1999, 31, 361- 372.
doi: 10.1016/S0304-4068(97)00060-8
|
15 |
Yu J , Xiang S W . Essential components of equilibria of n-person noncoopertive games[J]. Nonlinear Analysis: TMA, 1999, 38, 259- 264.
doi: 10.1016/S0362-546X(98)00193-X
|
16 |
俞建. Nash平衡的存在性与稳定性[J]. 系统科学与数学, 2002, 22, 296- 311.
|
17 |
Yang H , Yu J . On essential components of the set of weakly Pareto-Nash equilibrium points[J]. Applied Mathematics Letters, 2002, 15, 553- 560.
doi: 10.1016/S0893-9659(02)80006-4
|
18 |
Yu J , Yang H , Xiang S W . Unified approach to existence and stability of essential components[J]. Nonlinear Analysis: TMA, 2005, 63, e2415- e2425.
doi: 10.1016/j.na.2005.03.048
|
19 |
俞建. 博弈论与非线性分析[M]. 北京: 科学出版社, 2008.
|
20 |
Yang Z , Zhang H Q . Essential stability of cooperative equilibria for population games[J]. Optimization Letters, 2019, 13, 1573- 1582.
doi: 10.1007/s11590-018-1303-5
|
21 |
张海群. 种群博弈中合作均衡的存在性与稳定性研究[D]. 上海: 上海财经大学, 2020.
|
22 |
张海群. 有限理性与一类群体博弈弱有效Nash均衡的稳定性[J]. 数学物理学报, A辑, 2023, 4, 432- 447.
|
23 |
Kajii A . A generalization of Scarf's theorem: An α-core existence theorem without transitivity or completeness[J]. Journal of Economic Theory, 1992, 56, 194- 205.
doi: 10.1016/0022-0531(92)90076-T
|
24 |
张弦. 多主从群体博弈中合作均衡的存在性[J]. 应用数学学报, 2022, 2, 197- 211.
|
25 |
武文俊, 杨光惠, 房才雅, 等. 主从群体博弈合作均衡的通有稳定性[J]. 数学物理学报, A辑, 2023, 43, 921- 929.
|
26 |
Yang G H , Yang H . Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games[J]. Set-Valued and Variational Analysis, 2017, 25, 427- 439.
doi: 10.1007/s11228-016-0391-6
|
27 |
Yang G H , Yang H , Song Q Q . Stability of weighted Nash equilibria for multiobjective population games[J]. Journal of Nonlinear Science and Applications, 2016, 9 (3): 4167- 4176.
|
28 |
杨光惠. 多目标群体博弈平衡的精炼[D]. 贵阳: 贵州大学, 2017.
|
29 |
赵薇, 杨辉, 吴隽永. 不确定参数下群体博弈均衡的存在性与通有稳定性[J]. 应用数学学报, 2020, 43 (4): 627- 638.
|
30 |
王明婷, 杨光惠, 杨辉. 有限理性下不确定性群体博弈弱NS平衡的稳定性[J]. 数学物理学报, A辑, 2022, 6, 1812- 1825.
|
31 |
Wang G , Liu Z , Yang H , et al. Existence of equilibrium solutions for multi-objective population games with fuzzy parameters[J]. Fuzzy Sets and Systems, 2023, 473, 108698.
doi: 10.1016/j.fss.2023.108698
|
32 |
Maynard Smith J , Price R . The logic of animal conflict[J]. Nature, 1973, 246, 15- 18.
doi: 10.1038/246015a0
|
33 |
Pi J X , Yang G H , Yang H . Evolutionary dynamics of cooperation in N-person snowdrift games with peer punishment and individual disguise[J]. Physica A: Statistical Mechanics and its Applications, 2022, 592, 126839.
doi: 10.1016/j.physa.2021.126839
|
34 |
Pi J X , Yang G H , Tang W , et al. Stochastically stable equilibria for evolutionary snowdrift games with time costs[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 604, 127927.
doi: 10.1016/j.physa.2022.127927
|
35 |
Bi Y , Yang H . Based on reputation consistent strategy times promotes cooperation in spatial prisoner's dilemma game[J]. Applied Mathematics and Computation, 2023, 444, 127818.
doi: 10.1016/j.amc.2022.127818
|
36 |
Bi Y , Yang H . Heterogeneity of strategy persistence promotes cooperation in spatial prisoner's dilemma game[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 624, 128939.
doi: 10.1016/j.physa.2023.128939
|
37 |
Bi Y , Yang H . Heterogeneous reputation promotes cooperation in spatial public goods game[J]. Physics Letters A, 2023, 488, 129149.
doi: 10.1016/j.physleta.2023.129149
|
38 |
Zhou D , Pi J X , Yang G H , et al. Nonlinear dynamics of a heterogeneous quantum Commons' tragedy[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 608, 128231.
doi: 10.1016/j.physa.2022.128231
|
39 |
Zhou D , Yang H , Pi J X , et al. The dynamics of a quantum Cournot duopoly with asymmetric information and heterogeneous players[J]. Physics Letters A, 2023, 192033.
|
40 |
Larbani M . Non-cooperative fuzzy games in normal form: A survey[J]. Fuzzy Sets and Systems, 2009, 160 (22): 3184- 3210.
doi: 10.1016/j.fss.2009.02.026
|
41 |
Liu B D . Uncertainty Theory[M]. New York: Springer, 2010.
|
42 |
袁先智. 共识博弈与区块链生态共识均衡[J]. 运筹学学报(中英文), 2024, 28 (3): 1- 26.
|