运筹学学报
• 运筹学 • 上一篇 下一篇
周丽霞1 徐义红1,* 吕强1
收稿日期:
出版日期:
发布日期:
通讯作者:
ZHOU Lixia1 XU Yihong1,* L\"{U} Qiang1
Received:
Online:
Published:
Supported by:
国家自然科学基金 (No. 11461044), 江西省自然科学基金 (No. 20151BAB 201027), 江西省教育厅科技项目 (No. GJJ12010)
摘要:
引进了一种新的切锥, 讨论它与相依切锥的关系. 借助这种新的切锥引进了一类新的二阶组合切导数, 并讨论了它与其他二阶切导数的关系. 利用这类新的二阶组合切导数, 建立了集值优化分别取得Henig有效元和全局有效元的最优性必要条件.
关键词: 切锥, 二阶组合切导数, Henig 有效元, 全局有效元
Abstract:
A new kind of tangent cones is introduced, whose relationship to the contingent cone is discussed. With the introduced cones, a new kind of second-order tangent derivatives, termed second-order composed tangent derivatives, is developed, and its relationship to other second-order composed tangent derivatives is discussed. Then, with the help of second-order composed tangent derivatives, optimality necessary conditions are established respectively for a Henig efficient solution and a globally proper efficient solution of set-valued optimization.
Key words: tangent cone, second-order composed tangent derivative, Henig efficient element, globally proper efficient element
周丽霞, 徐义红, 吕强. 一类新的二阶组合切导数及其应用[J]. 运筹学学报, doi: 10.15960/j.cnki.issn.1007-6093.2017.03.005.
ZHOU Lixia, XU Yihong, L\"{U} Qiang. A new kind of second-order composed tangent derivatives and its applications[J]. Operations Research Transactions, doi: 10.15960/j.cnki.issn.1007-6093.2017.03.005.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2017.03.005
https://www.ort.shu.edu.cn/CN/Y2017/V21/I3/45