[1] Kella O. The threshold policy in the M/G/1 queue with server vacations [J]. Naval Research Logistics, 1989, 36(1): 111-123.
[2] Hur S, Paik S J. The effect of different arrival rates on the N-policy of M/G/1 with server setup [J]. Applied Mathematical Modelling, 1999, 23(4): 289-299.
[3] 唐应辉. 延迟 N-策略 M/G/1 排队系统队长的瞬态和稳态分布 [J]. 系统工程理论与实践, 2007, 27(11): 130-134.
[4] 吴锦标, 尹小玲, 刘再明. 具有 N-策略和负顾客的反馈抢占型的 M/G/1 重试可修排队系统 [J]. 应用数学学报, 2009, 32(2): 323-334.
[5] Wang K H, Huang K B. A maximum entropy approach for the \langle p, N\rangle-policy M/G/1 queue with a removable and unreliable server [J]. Applied Mathematical Modelling, 2009, 33: 2024-2034.
[6] 罗海军, 朱翼隽. 带有负顾客的 N-策略工作休假 M/M/1 排队 [J]. 运筹与管理, 2010, 19(1): 100-105.
[7] 唐应辉, 蒲会, 余玅妙. 带启动时间的 N-策略 M/G/1 排队系统的队长 [J]. 系统工程的理论与实践, 2011, 31(1): 131-137.
[8] Tadj L, Choudhury G, Rekab K. A two-phase quorum queueing system with bernoulli vacation schedule, setup, and N-policy for an unreliable server with delaying repair [J]. International Journal Services and Operations Management, 2012, 12(2): 139-164.
[9] Lee H W, Beak J W, Jeon J. Analysis of the M^X/G/1 queue under D-policy [J]. Stochastic Analysis and Applications, 2005, 23(4): 785-808.
[10] Wang K H, Kuo C C, Ke J C . Optimal control of the D-Policy M/G/1 queueing system with server breakdowns [J]. American Journal of Applied Sciences, 2008, 5(5): 565-573.
[11] Lee H W, Kim S A, Lee S W. Analysis and cost optimization of the M/G/1 queue under the D-policy and LCFS discipline [J]. Stochastic Analysis and Applications, 2008, 26(1): 39-59.
[12] 蒲会. 延迟 D-策略 M/G/1(可修)排队系统分析 [D]. 成都: 四川师范大学, 2010.
[13] Gakis G K, Rhee H K, Sivazlian B D. Distributions and first moments of the busy and idle periods in controllable M/G/1 queueing models with simple and dyadic policies [J]. Stochastic Analysis and Applications, 1995, 13(1): 47-81.
[14] Wang K H, Ke J C. Control policies of an M/G/1 queueing system with a removable and non-reliable server [J]. International Transactions in Operational Research, 2002, 9(2): 195-212.
[15] 井彩霞, 崔颖, 田乃硕. Min(N, V)-策略休假的 M/G/1 排队系统分析 [J]. 运筹与管理, 2006, 15(3): 53-58.
[16] Lee H W, Seo W J. The performance of the M/G/1 queue under the dyadic Min(N, D)-policy and its cost optimization [J]. Performance Evaluation, 2008, 65(10): 742-758.
[17] Lee H W, Seo W J, Lee S W, et al. Analysis of the MAP/G/1 queue under the Min(N, D)-policy [J]. Stochastic Models, 2010, 26(1): 98-123.
[18] Jiang F C, Huang D C, Yang C T, et al. Design strategy for optimizing power consumption of sensor node with Min(N, T) policy M/G/1 queuing models [J]. International Journal of Communication Systems, 2012, 25(5): 652-671.
[19] 唐应辉, 吴文青, 刘云颇, 等. 基于多重休假的 Min(N, V)-策略 M/G/1 排队的队长分布 [J]. 系统工程理论与实践, 2013, 33(1): 1-14.
[20] 唐应辉, 唐小我. 排队论------基础与分析技术 [M]. 北京: 科学出版社, 2006.
[21] Doetsh G. Theorie und Anwendung der Laplace Transformation [M]. New York: Dover, 1943. |