运筹学学报 ›› 2015, Vol. 19 ›› Issue (4): 97-106.doi: 10.15960/j.cnki.issn.1007-6093.2015.04.009

• 运筹学 • 上一篇    下一篇

多选择NTU对策核心的一个非空条件及公理化

田海燕1,*, 张刚2   

  1. 1. 西北工业大学应用数学系, 西安 710072; 2. 河北师范大学数学与信息科学学院, 石家庄 050024
  • 收稿日期:2015-02-06 出版日期:2015-12-15 发布日期:2015-12-15
  • 通讯作者: 田海燕 tian\_math@163.com
  • 基金资助:

     河北省自然科学基金(No. A2014205152)

A non-empty condition and an axiomatization  for the core of multi-choice NTU games

TIAN Haiyan1,*, ZHANG Gang2   

  1. 1.Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China; 2.College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
  • Received:2015-02-06 Online:2015-12-15 Published:2015-12-15

摘要:

 提出了\pi-均衡多选择NTU对策的概念,证明了\pi-均衡多选择NTU对策的核心非空, 定义了多选择NTU对策的非水平性质和缩减对策,给出了相容性和逆相容性等概念. 用个体合理性、单人合理性、相容性和逆相容性对非水平多选择NTU对策的核心进行了公理化.

关键词: 多选择NTU对策, 核心, \pi-均衡, 相容性

Abstract:

This paper introduces the concept of \pi-balanced multi-choice NTU games and proves that any \pi-balanced multi-choice NTU game has a non-empty core. The definitions of non-leveled multi-choice NTU games and reduced games are introduced and the concepts of consistency and converse consistency are also given. An axiomatization for the core of non-leveled multi-choice NTU games is provided by using individual rationality, one-person rationality, consistency and converse consistency.

Key words:  multi-choice NTU games, cores, \pi-balancedness, consistency