Auslender A, Penalty and barrier methods: unified framework [R]// Technical repoat, Laboratoire D'econmetrie de L'ecole Polytechnig Paris, 1997.
Auslender A, Cominetti R, Haddou M, Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming [J]. Math Oper Res, 1997, 22: 43-62.
Ben-Tal A, Teboulle M. A smoothing Technique foe Non-different Optimization Problem in: Lecture Notes in Mathematics [M]. Berlin: Springer, 1989.
Chen C, Mangasarian O L. A Class of smoothing functions for nonlinear and mixed complementary problems [J]. Comput Optim App, 1996, 5: 97-138.
Chen C, Mangasarian O L. Smoothing method for convex inequality and linear complementarity problems [J]. Math Program, 1995, 71: 51-69.
Gonzaga C C, Castillo R A. A nonlinear programming algorithm based on non-coercive penalty functions [J]. Math Program (Sec B), 2003, 96: 87-101.
Pinar M, Zenios S. On smoothing exact penalty functions for convex constrained optimization [J]. SIAM J Optim, 1994, 4: 486-511.
Wang C Y, Zhao W L, Zhou J C, et al. Global convergence and finite termination of a class of smooth penalty function algorithms [J]. Optim Meth Soft, 2013, 28: 1-25.
Zang I. Smoothing-out technique for min-max optimization [J]. Math Program, 1980, 19: 61-77.
Rubinov A M, Glover B M, Yang X Q. Decreasing function with Applications to Penalization [J]. SIAM J Optim, 1999, 10: 289-313.
Wang C Y, Ma C, Zhou J C. A new class of exact penalty functions and penalty algorithms [J]. J Glob Optim, 2014, 58: 51-73.
|