运筹学学报

• 运筹学 •    下一篇

带次模惩罚的优先设施选址问题的近似算法

王颖1, 王凤敏2, 徐大川2,*, 徐文青2,3   

  1. 1.  太原工业学院理学系, 太原 030008; 2. 北京工业大学应用数理学院, 北京 100124;  3. 加州州立大学长滩分校数学与统计系,  加州长滩 90840, 美国
  • 收稿日期:2014-12-01 出版日期:2015-06-15 发布日期:2015-06-15
  • 通讯作者: 徐大川
  • 基金资助:

    国家自然科学基金 (No. 11371001)

 Approximation algorithms for the  priority facility location problem with submodular penalties

WANG Ying1, WANG Fengmin2, XU Dachuan2,*, XU Wenqing2,3   

  1. 1. Department of Science, Taiyuan Institute of Technology, Taiyuan 030008,  China; 2. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; 3. Department of Mathematics and Statistics, California State University, Long Beach, CA 90840, USA
  • Received:2014-12-01 Online:2015-06-15 Published:2015-06-15

摘要:

研究带次模惩罚的优先设施选址问题, 每个顾客都有一定的服务水平要求, 开设的设施只有满足了顾客的服务水平要求, 才能为顾客提供服务, 没被服务的顾客对应一定的次模惩罚费用. 目标是使得开设费用、连接费用与次模惩罚费用之和最小. 给出该问题的整数规划、 线性规划松弛及其对偶规划. 基于原始对偶和贪婪增广技巧, 给出该问题的两个近似算法, 得到的近似比分别为3和2.375.

关键词: 次模惩罚, 优先设施选址, 原始对偶, 贪婪增广, 近似算法

Abstract:

In this paper, we study priority facility location problem with submodular penalties where each client has a level-of-service requirement. An open facility must satisfy the requirement of the clients served by it, and there is a submodular penalty cost corresponding with the unserved clients. The objective is to minimize the sum of the opening cost, the connection cost and the submodular penalty cost. We present the integer program, the linear programming relaxation and the dual program for the problem. Using the primal-dual and greedy augmentation techniques, we then propose two approximation algorithms and obtain the approximation ratios of 3 and 2.375 respectively.

Key words: submodular penalties, priority facility location, primal-dual, greedy augmentation, approximation algorithm