| Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Contraints [M].  Cambridge: Cambridge University Press, 1996. Outrata J, Kocvara M, Zowe J. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results [M]. New York: Kluwer Academic Publisher, 1998. Fukushima M, Lin G H. Smoothing methods for mathematical programs with equilibrium constraints [J]. Proceedings of Informatics Research for Development of Knowledge Society Infrastructure, 2004, 206-213. Chen Y,  Florian M. The nonlinear bilevel programming problem: formulations, regularity and optimality conditions [J]. Optimization, 1995,  32: 193-209. Scholtes S.  Convergence properties of a regularization scheme for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2001,  11: 918-936. Lin G H, Fukushima M. A modified relaxation scheme for mathematical programs with complementarity constraints [J].  Annals of Operations Research, 2005,  133: 63-84. Kadrani A,  Dussault J P,  Benchakroun A. A new regularization scheme for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2009,  20: 78-103. Fukushima M, Pang J S. Convergence of a smoothing continuation method for mathematical programs with complementarity constraints, Ill-posed variational problems and regularition techniques [J]. Lecture Notes in Economics and Mathematical Systems, 1999,  477: 105-116. Facchinei F, Jiang H, Qi L. A smoothing method for mathematical programs with equilibrium constraints [J]. Mathematical Programming, 1999,  85: 107-134.  Hu X M, Ralph D. Convergence of a penalty method for mathematical programs with complementarity constraints [J]. Journal of Optimization Theory and Applications, 2004,  123: 365-390. Huang X X, Yang X Q, Zhu D L. A sequential smooth penalization approach to mathematical programs with complementarity constraints [J]. Numerical Functional Analysis and Optimization, 2006,  27: 71-98.  Luo Z Q, Pang J S, Ralph D. Piece-wise sequential quadratic programming for mathematical programs with nonlinear complementarity constraints [M]//Complementarity and Variational Problems: State of the Art.  Philadelphia: SIAM Publications, 1997. Liu G S, Ye J J. Merit function piecewise SQP algorithm for mathematical programs with equilibrium constraints [J]. Journal of Optimization Theory and Applications, 2007,  135: 623-641.  Benson H Y, Sen A, Shanno D F, et al. Interior-point algorithm, penalty methods and equilibrium problems [J]. Computational Optimization and Applications, 2005,  34: 155-182. Arvind U, Lorenz T. An interior point method for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2005, 15: 720-750. 乌力吉, 陈国庆. 线性互补问题的一种新~Lagrange 乘子法 [J]. 高等学校计算数学学报, 2004,  26: 162-171. 乌力吉, 陈国庆. 线性互补问题的一类新的带参数价值函数的阻尼牛顿法 [J]. 应用数学, 2005,  18: 33-39.Pang J S, Fukushima M. Complementarity constraint qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints [J]. Computational Optimization and Applications, 1999,  13: 111-136. Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity [J]. Mathematics of Operations Research, 2000,  25: 1-21. Pang J S, Fukushima M. Complementarity constraint qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints [J]. Computational Optimization and Applications, 1999,  13: 111-136. Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity [J]. Mathematics of Operations Research, 2000,  25: 1-21. Ye J J. Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints [J]. Journal of Mathematical Analysis and Applications, 2005,  307: 305-369. |