运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (4): 159-174.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.013

• • 上一篇    下一篇

线性乘积和规划问题的基于D.C.松弛的分支定界算法

张博1, 王红雨2, 高岳林1,†   

  1. 1. 北方民族大学数学与信息科学学院, 宁夏银川 750021;
    2. 宁夏大学土木与水利工程学院, 宁夏银川 750021
  • 收稿日期:2022-09-10 出版日期:2025-12-15 发布日期:2025-12-11
  • 通讯作者: 高岳林 E-mail:gaoyuelin8@163.com
  • 基金资助:
    国家自然科学基金(Nos.12301401,12461053),宁夏自然科学基金(No.2025AAC030059),宁夏高等教育一流学科建设项目基金(No.NXYLXK2017B09),北方民族大学重大专项(No.ZDZX201901),南京证券支持基础学科研究项目(No.NJZQJCXK202201)

A D.C. relaxation based branch-and-bound algorithm for sum-of-linear-products programming problems

ZHANG Bo1, WANG Hongyu2, GAO Yuelin1,†   

  1. 1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, Ningxia, China;
    2. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2022-09-10 Online:2025-12-15 Published:2025-12-11

摘要: 线性乘积和规划已出现在工程实践和管理科学等领域, 是一类NP-难问题。针对该问题目标函数的特殊结构, 将其重构为一个D.C. (difference of convex functions) 规划问题。再利用凹函数的凸包络, 构造出了一种D.C.松弛问题, 并将其分解为两个凸子问题。然后将该D.C. 松弛与超矩形的标准二分法相结合, 设计了新的分支定界算法, 并分析了其理论收敛性和计算复杂度。最后, 借助大量数值实验验证了该算法的有效性。

关键词: 全局优化, 线性乘积和规划, 分支定界, D.C.规划松弛技术

Abstract: The sum-of-linear-products program has appeared in fields such as engineering practice and management science, and it is a class of NP-Hard problems. In view of the special structure of the objective function of this problem, it is reconstructed as a D.C. (difference of convex functions) programming problem. Based on the convex envelope of concave function, a D.C. relaxation subproblem is constructed and decomposed into two convex optimization problems. Then, by combining the D.C. relaxation with the standard bisection method of hyperrectangle, a new branch and bound algorithm is designed, and its theoretical convergence and computational complexity are analyzed. Finally, the effectiveness of the algorithm is verified by a large number of numerical experiments.

Key words: global optimization, sum-of-linear-products programming problem, branch and bound, D.C. programming relaxation technique

中图分类号: