[1] Nash J. Non-cooperative games [D]. Princeton: Princeton University, 1950. [2] Smith M. Evolution and the Theory of Games [M]. Cambridge: Cambridge University Press, 1982. [3] Bjornerstedt J, Weibull J W. Nash equilibrium and evolution by imitation [EB/OL]. [2022-10- 21]. https://www.econstor.eu/bitstream/10419/94705/1/wp407.pdf. [4] Harold W K, John C H, Reinhard S, et al. The work of John Nash in game theory: Nobel seminar, December 8, 1994[J]. Journal of Economic Theory, 1996, 69(1): 153-185. [5] Weibull J W, Jorgen W. The mass-action interpretation of Nash equilibrium [EB/OL]. [2022- 10-21]. https://www.econstor.eu/bitstream/10419/95056/1/wp427.pdf. [6] Hofbauer J. From Nash and Brown to Maynard Smith: Equilibria, dynamics and ESS [J]. Selection, 2005, 1(1): 81-88. [7] Blume L E. Population games [J]. Game Theory & Information, 1998, 11(3): 211-217. [8] Hauer J F, Trudnowski D J, Rogers G, et al. Evolutionary games and population dynamics [J]. IEEE Computer Applications in Power, 1998, 10(4): 50-54. [9] Sandholm W H. Population Games and Evolutionary Dynamics [M]. Massachusetts: MIT Press, 2011. [10] Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games [J]. Set-Valued and Variational Analysis, 2017, 25(2): 427-439. [11] Yang G H, Yang H, Song Q Q. Stability of weighted Nash equilibrium for multiobjective population games [J]. The Journal of Nonlinear Sciences and Applications, 2016, 9(6): 4167- 4176. [12] Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games [J]. Optimization Letters, 2019, 13(7): 1573-1582. [13] 陈华鑫, 贾文生. 群体博弈的逼近定理及通有收敛性[J]. 数学物理学报, 2021, 41(5): 1566-1573. [14] Smith J M, Price G R. The logic of animal conflict [J]. Nature, 1973, 246: 15-18. [15] Taylor P D, Jonker L B. Evolutionarily stable strategies and game dynamics [J]. Mathematical Biosciences, 1978, 40(1-2): 145-156. [16] Hofbauer J, Schuster P, Sigmund K. A note on evolutionary stable strategies and game dynamics [J]. Journal of Theoretical Biology, 1979, 81(3): 609-612 [17] Zeeman E C. Population dynamics from game theory [M]//Nitecki Z, Robinson C. (eds.) Global Theory of Dynamical Systems. Berlin: Springer, 1979, 819: 471-497. [18] Hofbauer J, Sigmund K. The Theory of Evolution and Dynamical Systems [M]. Cambridge: Cambridge University Press, 1988. [19] Nowak M A, Sigmund K. Evolutionary dynamics of biological games [J]. Science, 2004, 303(5659): 793-799. [20] Sasaki T, Unemi T. Replicator dynamics in public goods games with reward funds [J]. Journal of Theoretical Biology, 2011, 287: 109-114. [21] Cressman R, Tao Y. The replicator equation and other game dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 10810-10817. [22] Thomas B. On evolutionarily stable sets [J]. Journal of Mathematical Biology, 1985, 22: 105- 115. [23] Thomas B. Evolutionary stable sets in mixed-strategist models [J]. Theoretical Population Biology, 1985, 28(3): 332-341. [24] 张维迎. 博弈论与信息经济学[M].上海: 上海人民出版社, 2004. [25] 蔡阳洋, 向淑文. $n$人非合作博弈弱Nash均衡点的存在[J]. 重庆工商大学学报(自然科学版), 2020, 37(1): 54-58. [26] 王明婷, 杨光惠. 群体博弈弱Nash平衡的存在性和通有稳定性[J]. 数学的实践与认识, 2021, 51(15): 187-193. [27] Cooper R, DeJong D, Forsythe R, et al. Communication in the battle of the sexes game: Some experimental results [J]. RAND Journal of Economics, 1989, 20(4): 568-587. [28] Sugden R. The Economics of Rights, Co-Operation and Welfare [M]. Oxford: Basil Blackwell, 1986. [29] Axelrod R. Effective choice in the prisoner’s dilemma [J]. The Journal of Conflict Resolution, 1980, 24(3): 3-25. |