1 |
Qian L Y , Shen Y , Wang W , et al. Valuation of risk-based premium of DB pension plan with terminations[J]. Insurance: Mathematics and Economics, 2019, 86, 51- 63.
doi: 10.1016/j.insmatheco.2019.01.012
|
2 |
Chen Z , Li Z F , Zeng Y , et al. Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk[J]. Insurance: Mathematics and Economics, 2017, 75, 137- 150.
doi: 10.1016/j.insmatheco.2017.05.009
|
3 |
Bian L H , Li Z F , Yao H X . Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause[J]. Insurance: Mathematics and Economics, 2018, 81, 78- 94.
doi: 10.1016/j.insmatheco.2018.05.005
|
4 |
Westerhout E. Intergenerational risk sharing in time-consistent funded pension schemes [EB/OL]. (2011-03-01)[2021-06-28]. https://api.semanticscholar.org/CorpusID:62812089.
|
5 |
Bommel J V. Intergenerational risk sharing and bank raids [EB/OL]. (2007-12-01)[2021-06-28]. http://dx.doi.org/10.2139/ssrn.965178.
|
6 |
Wang S X , Lu Y , Sanders B . Optimal investment strategies and intergenerational risk sharing for target benefit pension plans[J]. Insurance: Mathematics and Economics, 2018, 80, 1- 14.
doi: 10.1016/j.insmatheco.2018.02.003
|
7 |
Wang S X , Rong X M , Zhao H . Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans[J]. Applied Mathematics and Computation, 2019, 346, 205- 218.
|
8 |
Wang S X , Lu Y . Optimal investment strategies and risk-sharing arrangements for a hybrid pension plan[J]. Insurance: Mathematics and Economics, 2019, 89, 46- 62.
doi: 10.1016/j.insmatheco.2019.09.005
|
9 |
Zhu H N , Cao M , Zhang C K . Time-consistent investment and reinsurance strategies for meanvariance insurers with relative performance concerns under the Heston model[J]. Finance Research Letters, 2019, 30, 280- 291.
doi: 10.1016/j.frl.2018.10.009
|
10 |
A C X , Li Z F . Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model[J]. Insurance: Mathematics and Economics, 2015, 61, 181- 196.
doi: 10.1016/j.insmatheco.2015.01.005
|
11 |
Zhang Y , Zhao P B , Kou B Y . Optimal excess-of-loss reinsurance and investment problem with thinning dependent risks under Heston model[J]. Journal of Computation and Applied Mathematics, 2021, 382, 113082.
doi: 10.1016/j.cam.2020.113082
|
12 |
Wang P , Li Z F . Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility[J]. Insurance: Mathematics and Economics, 2018, 80, 67- 83.
doi: 10.1016/j.insmatheco.2018.03.003
|
13 |
Wang N , Zhang N , Jin Z , et al. Robust non-zero-sum investment and reinsurance game with default risk[J]. Insurance: Mathematics and Economics, 2019, 84, 115- 132.
doi: 10.1016/j.insmatheco.2018.09.009
|
14 |
Wang N , Zhang N , Jin Z , et al. Reinsurance-investment game between two mean-variance insurers under model uncertainty[J]. Journal of Computation and Applied Mathematics, 2021, 382, 113095.
doi: 10.1016/j.cam.2020.113095
|
15 |
Sun Z Y , Zheng X X , Zhang X . Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk[J]. Journal of Mathematical Analysis and Applications, 2017, 446, 1666- 1686.
doi: 10.1016/j.jmaa.2016.09.053
|
16 |
Wang S X , Rong X M , Zhao H . Optimal time-consistent reinsurance-investment strategy with delay for an insurer under a defaultable market[J]. Journal of Mathematical Analysis and Applications, 2019, 474, 1267- 1288.
doi: 10.1016/j.jmaa.2019.02.016
|
17 |
Zhu J Q , Guan G H , Li S H . Time-consistent non-zero-sum stochastic differential reinsurance and investment game under default and volatility risks[J]. Journal of Computational and Applied Mathematics, 2020, 374, 112737.
doi: 10.1016/j.cam.2020.112737
|
18 |
Wang P Q , Rong X M , Zhao H , et al. Robust optimal investment and benefit payment adjustment strategy for target benefit pension plans under default risk[J]. Journal of Computational and Applied Mathematics, 2021, 391, 113382.
doi: 10.1016/j.cam.2021.113382
|
19 |
张初兵, 荣喜民, 常浩. CEV模型下有随机工资DC型养老金的最优投资[J]. 工程数学学报, 2013, 30 (1): 1- 9.
|
20 |
Zeng Y , Li D P , Chen Z , et al. Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility[J]. Journal of Economic Dynamics & Control, 2018, 88, 70- 103.
|
21 |
Maenhout P . Robust portfolio rules and asset pricing[J]. Review of Financial Studies, 2004, 17, 951- 983.
doi: 10.1093/rfs/hhh003
|