运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (1): 63-76.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.006

•   • 上一篇    下一篇

多准则敏感性的偏序分析方法

岳立柱1,2,*(), 姚利微1, 崔亚华1, 许可1   

  1. 1. 辽宁工程技术大学工商管理学院, 辽宁葫芦岛 125105
    2. 辽宁工程技术大学管理科学与工程研究院, 辽宁葫芦岛 125105
  • 收稿日期:2021-11-23 出版日期:2025-03-15 发布日期:2025-03-08
  • 通讯作者: 岳立柱 E-mail:simaxinjing@163.com
  • 基金资助:
    辽宁省教育厅基金(LJ2020JCL028)

Partial order analysis method for multiple criteria sensitivity

Lizhu YUE1,2,*(), Liwei YAO1, Yahua CUI1, Ke XU1   

  1. 1. School of Business Administration, Liaoning Technical University, Huludao 125105, Liaoning, China
    2. Institute of Management Science and Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China
  • Received:2021-11-23 Online:2025-03-15 Published:2025-03-08
  • Contact: Lizhu YUE E-mail:simaxinjing@163.com

摘要:

多准则决策主要通过权重摄动构造敏感性分析方法, 当赋权困难或者发生争议时, 评价结果往往不够稳健。偏序敏感性分析以决策函数为目标函数、权重空间为约束条件建立规划问题, 借助极值点集构建方案间的偏序关系。最终应用Hasse图表达可能的变动结果, 得到方案和指标的敏感性程度。通过权重空间的变化, 偏序方法可以构造出适用于全局、局部和有限等多种敏感性分析方法。实例应用表明, 三类敏感性分析的偏序结果与仿真结果均完全一致, 体现了偏序方法的有效性和独特性。

关键词: 敏感性分析, 多准则决策, 权重空间, 全局敏感性

Abstract:

The sensitivity analysis method of multiple criteria decision making is mainly constructed by weight perturbation. When weight assignment is difficult or disputes occur, the evaluation results are often not robust enough. Partial order sensitivity analysis takes decision function as objective function and weight space as constraint condition to establish programming problem, and constructs the partial order relationship between schemes with the help of extreme point set. Ultimately, Hasse diagram is used to express the possible change results and the sensitivity of schemes and indicators is obtained. By changing the weight space, the partial order method can construct a variety of sensitivity analysis methods suitable for global, local and finite. The example application shows that the partial order results of the three kinds of sensitivity analysis are completely consistent with the simulation results, which reflects the effectiveness and uniqueness of the partial order method.

Key words: sensitivity analysis, multiple criteria decision making, weight space, global sensitivity

中图分类号: