A non-empty condition and an axiomatization  for the core of multi-choice NTU games

Expand
  • 1.Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China; 2.College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China

Received date: 2015-02-06

  Online published: 2015-12-15

Abstract

This paper introduces the concept of \pi-balanced multi-choice NTU games and proves that any \pi-balanced multi-choice NTU game has a non-empty core. The definitions of non-leveled multi-choice NTU games and reduced games are introduced and the concepts of consistency and converse consistency are also given. An axiomatization for the core of non-leveled multi-choice NTU games is provided by using individual rationality, one-person rationality, consistency and converse consistency.

Cite this article

TIAN Haiyan, ZHANG Gang . A non-empty condition and an axiomatization  for the core of multi-choice NTU games[J]. Operations Research Transactions, 2015 , 19(4) : 97 -106 . DOI: 10.15960/j.cnki.issn.1007-6093.2015.04.009

References

Gillies D B. Some theorems on n-person games [D]. Princeton: Princeton University Press, 1953.


Aumann R J, Peleg B. Von Neumann-Morgenstern solutions to cooperative games without side payments [J]. Bulletin of the American Mathematical Society, 1960,  66: 173-179.

Bondareva O. Some applications of linear programming methods to the theory of cooperative games [J]. Problemy Kybernetiki, 1963,  10: 119-139 (in Russian).

Shapley L S. On balanced sets and cores [J].  Naval Research Logistics Quarterly, 1967,  14: 453-460.
 
Shapley L S. Cores of convex games [J].  International Journal of Game Theory, 1971, 1: 11-26.

Scarf H. The core of an n-person game [J].  Econometrica, 1967,  35: 50-69.

Billera L J. Some theorems on the core of an n-person game without side-payments [J].  SIAM Journal of Applied Mathematics,1970,  18: 567-579.

Keiding H, Thorlund-Petersen. The core of a cooperative game without side-payments [J].  Journal of Optimization Theory and Applications, 1987, 54: 273-288.
 
Predtetchinski A, Herings J J. A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game [J]. Journal of Economic Theory, 2004,  116: 84-92.
 
Hsiao C R, Raghavan T E S. Monotonicity and dummy free property for multi-choice cooperative games [J]. International Journal of Game Theory, 1992, 21: 301-312.

van den Nouweland A, Potters J, Tijs S, Zarzuelo J. Cores and related solution concepts for multi-choice games [J]. Mathematical Methods of Operations Research, 1995,  41: 289-311.

Hwang Y A, Liao Y H. The unit-level-core for multi-choice games: the replicated core for TU games [J].Journal of Global Optimization, 2008,  47: 161-171.
 
Hwang Y A, Liao Y H. The multi-core, balancedness and axiomatizations for multi-choice games [J].International Journal of Game Theory, 2011, 40: 677-689.

Hwang Y A, Li W H. The core of multi-choice NTU games [J]. Mathematical Methods of Operations Research, 2005, 61: 33-40.
 
Peleg B, Sudh \ddot{o} lter P. Introduction to the theory of cooperative games (2nd) [M]. Springer, 2007.

Kakutani S. A generalization of Brouwer's fixed point theorem [J].  Duke Mathematical Journal, 1941,  8: 457-459.

 
Outlines

/