International crude prices forecast of double random integer programming model,algorithm and application

Expand
  • 1. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. Economics and Technology Research Institute, China National Petroleum Corporation, Beijing 100724, China; 3. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 4. College of Sciences, Dalian Nationalities University, Dalian 116600, Liaoning, China  

Received date: 2015-04-15

  Online published: 2015-09-15

Abstract

According to the international price of crude oil and its change of recent data,  we give the matrix of the amount of international crude oil prices change state transition probability (or frequency). According to the international crude oil price forecasting error minimum expectation and variance as the optimal target, taking the international crude oil price forecasting error minimum expectation and variance as the optimal index, a double random integer programming model to predict the price of international crude oil is proposed. Then  we discuss the existence of optimal solution. According to the constraint characteristics optimization algorithm is constructed.  At the same time, according to the current domestic refined oil pricing mechanism,  we predict the domestic refined oil price adjustment  by applying the  optimization algorithm which is proposed in this paper. The empirical analysis shows that the model in this paper is of certain accuracy and practicability of the optimization algorithm.

Cite this article

DONG Zhenyu, FENG Enmin, YIN Hongchao, ZHANG Yuduo . International crude prices forecast of double random integer programming model,algorithm and application[J]. Operations Research Transactions, 2015 , 19(3) : 18 -25 . DOI: 10.15960/j.cnki.issn.1007-6093.2015.03.003

References

Hotelling H. The economics of exhaustible resources [J]. Journal of Political Economy}, 1931, 39: 137-175.


张跃军, 达亚彬, 张璐, 等. 2014年国际原油市场分析与价格预测 [J].北京理工大学学报:  社会科学版, 2014, 2: 13-23.

Salnat S W. Exhaustible resources and industrial structure: A Nash-Cournot approach to the world oil market [J].  Journal of Political Economy, 1976, 84: 1079-1093.

董秀成, 王守春. 基于 LST-GARCH~模型的国际油价波动研究 [J].数理统计与管理, 2011, 3: 381-387.

胡爱梅, 王书平. 基于 ARIMA 与 GARCH 模型的国际油价预测比较分析 [J].经济研究导论, 2012, 26: 196-199.

舒通. 基于变系数回归模型的石油价格预测[J].  数理统计与管理, 2008, 5: 815-820.

秦鹏, 廖柏其. 基于广义指数预报因子的石油价格预测模型[J]. 系统工程理论与实践, 2010, 8: 1389-1395.

朱小梅, 郭志钢. 石油价格预测算法的仿真研究[J].  计算机仿真, 2011, 6: 361-364.

Wang S Y, Yu L, Lai K K. Crude oil price forecasting with TEI@I methodology [J].  International Journal of Systems Science and Complexity, 2005, 18: 145-166.

Wang S Y, Yu L, Lai K K. A novel hybrid AI system framework for crude oil price forecasting [C]// Lecture Notes in Artificial Intelligence. Heidelberg: Spinger-Verlag,  2004,  233-242.

Yu L, Wang S Y, Wen F H, et al. Genetic algorithm-based multi-criteria project portfolio selection [J].  Annals of Operations Research, 2012, 197(1): 71-86.

张文, 部慧, 汪寿阳. 基于优选模型的季度国际油价预测系统构建[J].系统工程学报, 2011, 26(1): 9-16.

Paulus J J, Ye D, Zhang G. Optimal online-list batch scheduling [J]. Information Processing Letters, 2009, 109: 1125-1128.

Yu G, Zhang G. Scheduling with a minimum number of machines [J]. Operations Research Letters, 2009, 37: 97-101.

Xie H B, Wang S Y. A new approach to model financial markets [J]. Journal of Systems Science and Complexity, 2013, 3: 432-440.

Xing W, Wang S Y, Liu L M. Optimal ordering and pricing strategies in the presence of a B2B spot market [J].  European Journal of Operational Research, 2012,  221: 87-98.

Yu M, Wang S Y. Dynamic optimal portfolio with maximum absolute deviation model [J].  Journal of Global Optimization, 2012, 53: 363-380.

Paulus J J, Ye D, Zhang G. Optimal online-list batch scheduling [J]. Information Processing Letters, 2009, 109: 1125-1128.

梁琳琳. 国际油价波动跳跃性特征的实证分析 [J].  数理统计与管理, 2011, 3: 388-396.

钱兴坤, 姜学峰. 2014 , 年国内外油气行业发展报告 [M]. 北京: 石油工业出版社, 2015.

 
Outlines

/