Operations Research Transactions >
2023 , Vol. 27 >Issue 3: 178 - 184
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2023.03.015
Extremal problems for Steiner Wiener index of unicyclic graphs
Received date: 2019-09-18
Online published: 2023-09-14
Wiener index is an important chemical index in chemical graph theory, defined as the sum of distances between all pairs of vertices. A generalization of the Wiener index, called the Steiner Wiener index, takes the sum of the Steiner distances over all sets S of cardinality k. The Steiner distance of vertices in a set S is the minimum size of a connected subgraph that contain these vertices. We consider the extremal problems with respect to the Steiner Wiener index among all unicyclic graphs.
Key words: Steiner Wiener index; Steiner distance; unicyclic graphs; Wiener index
Jie ZHANG, Yan JI . Extremal problems for Steiner Wiener index of unicyclic graphs[J]. Operations Research Transactions, 2023 , 27(3) : 178 -184 . DOI: 10.15960/j.cnki.issn.1007-6093.2023.03.015
| 1 | Bondy J A , Murty U S R . Graph Theory with Application[M]. New York: Macmillan Press, 1976. |
| 2 | Wiener H . Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69, 17- 20. |
| 3 | Li X L , Mao Y P , Gutman I . The Steiner Wiener index of a graph[J]. Discussiones Mathematicae Graph Theory, 2016, 36, 455- 465. |
| 4 | Dankelmann P , Oellermann O R , Swart H C . The average Steiner distance of a graph[J]. Journal of Graph Theory, 1996, 22 (1): 15- 22. |
| 5 | Dankelmann P , Swart H C , Oellermann O R . On the average Steiner distance of graphs with prescribed properties[J]. Discrete Applied Mathematics, 1997, 79, 91- 103. |
| 6 | Dankelmann P . The Steiner k-Wiener index of graphs with given minimum degree[J]. Discrete Applied Mathematics, 2019, 268, 35- 43. |
| 7 | Gutman I . On Steiner degree distance of trees[J]. Applied Mathematics and Computation, 2016, 283, 163- 167. |
| 8 | Li X L , Mao Y P , Gutman I . Inverse problem on the Steiner Wiener index[J]. Discussiones Mathematicae Graph Theory, 2018, 69, 83- 95. |
| 9 | Lu L , Huang Q , Hou J , et al. A sharp lower bound on Steiner Wiener index for trees with given diameter[J]. Discrete Mathematics, 2018, 341, 723- 731. |
| 10 | Mao Y P , Wang Z , Gutman I . Steiner Wiener index of graph products[J]. Transactions on Combinatorics, 2016, 5 (3): 39- 50. |
| 11 | Mao Y P , Wang Z , Gutman I , et al. Steiner degree distance[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2017, 78 (1): 221- 230. |
| 12 | Mao Y P , Wang Z , Gutman I , et al. Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs[J]. Discrete Applied Mathematics, 2017, 219, 167- 175. |
| 13 | Zhang J , Wang H , Zhang X D . The Steiner Wiener index of trees with a given segment sequence[J]. Applied Mathematics and Computation, 2019, 344, 20- 29. |
| 14 | Zhang J , Gentry M , Wang H , et al. On the inverse Steiner Wiener problem[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2019, 82 (3): 743- 754. |
| 15 | Zhang J , Zhang G J , Wang H , et al. On extremal trees with respect to the Steiner Wiener index[J]. Discrete Mathematics Algorithms and Applications, 2019, 11 (6): 1950067. |
| 16 | Fischermann M , Hoffmann A , Rautenbach D , et al. Wiener index versus maximum degree in trees[J]. Discrete Applied Mathematics, 2002, 122, 127- 137. |
| 17 | Liu H , Pan X F . On the Wiener index of trees with fixed diameter[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2008, 60, 85- 94. |
| 18 | Wang H . The extremal values of the Wiener index of a tree with given degree sequence[J]. Discrete Applied Mathematics, 2008, 156, 2647- 2654. |
| 19 | Yu G H , Feng L H . On the Wiener index of unicyclic graphs with given girth[J]. Ars Combinatoria, 2010, 94, 361- 369. |
| 20 | Zhang J , Wang H , Zhang X D . The Wiener index of trees with given degree sequence and segment sequence[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2019, 81 (1): 105- 118. |
| 21 | Zhang X D , Xiang Q Y , Xu L Q , et al. The Wiener index of trees with given degree sequences[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2008, 60, 623- 644. |
/
| 〈 |
|
〉 |