Operations Research Transactions >
2022 , Vol. 26 >Issue 3: 1 - 16
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2022.03.001
A survey of differential privacy algorithms for the
Received date: 2021-12-20
Online published: 2022-09-07
The
Fan YUAN, Dachuan XU, Dongmei ZHANG
. A survey of differential privacy algorithms for the
| 1 | Dasgupta S. The hardness of $k$-means clustering[R]. San Diego: Department of Computer Science and Engineering, University of California, 2008: CS2008-0916. |
| 2 | AhmadianS,Norouzi-FardA,SvenssonO,et al.Better guarantees for $k$-means and euclidean $k$-median by primal-dual algorithms[J].SIAM Journal on Computing,2019,49(4):FOCS17-97-FOCS17-156. |
| 3 | 张冬梅,李敏,徐大川,等.$k$-均值问题的理论与算法综述[J].中国科学: 数学,2020,50(9):1387-1404. |
| 4 | LuR,ZhuH,LiuX,et al.Toward efficient and privacy-preserving computing in big data era[J].IEEE Network,2014,28(4):46-50. |
| 5 | WangT,ZhengZ,RehmaniM H,et al.Privacy preservation in big data from the communication perspective–-A survey[J].IEEE Communications Surveys Tutorials,2018,21(1):753-778. |
| 6 | Yao X, Zhou X, Ma J. Differential privacy of big data: An overview[C]//Proceedings of the 2nd IEEE International Conference on Big Data Security on Cloud, High Performance and Smart Computing and Intelligent Data and Security, 2016: 7-12. |
| 7 | JainP,GyanchandaniM,KhareN.Differential privacy: its technological prescriptive using big data[J].Journal of Big Data,2018,5(1):1-24. |
| 8 | Skarkala M E, Maragoudakis M, Gritzalis S, et al. Privacy preservation by $k$-anonymization of weighted social networks[C]//Proceedings of the 4th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2012: 423-428. |
| 9 | Zheleva E, Getoor L. Privacy in social networks: A survey[M]//Social Network Data Analytics, Boston: Springer, 2011: 277-306. |
| 10 | Task C, Clifton C. What should we protect? Defining differential privacy for social network analysis[M]//State of the Art Applications of Social Network Analysis. Cham: Springer, 2014: 139-161. |
| 11 | Gowtham M, Ahila S S. Privacy enhanced data communication protocol for wireless body area network[C]//Proceedings of the 4th International Conference on Advanced Computing and Communication Systems, 2017: 1-5. |
| 12 | LiM,LouW,RenK.Data security and privacy in wireless body area networks[J].IEEE Wireless communications,2010,17(1):51-58. |
| 13 | Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy[C]//Proceedings of the 16th ACM SIGSAC Conference on Computer and Communications Security, 2016: 308-318. |
| 14 | KaissisG A,MakowskiM R,RückertD,et al.Secure, privacy-preserving and federated machine learning in medical imaging[J].Nature Machine Intelligence,2020,2(6):305-311. |
| 15 | KaissisG,ZillerA,Passerat-PalmbachJ,et al.End-to-end privacy preserving deep learning on multi-institutional medical imaging[J].Nature Machine Intelligence,2021,3(6):473-484. |
| 16 | Chaturvedi A, Nguy$\rm \tilde{\hat{e}}$n H L, Zakynthinou L. Differentially private decomposable submodular maximization[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 6984-6992. |
| 17 | Mitrovic M, Bun M, Krause A, et al. Differentially private submodular maximization: data summarization in disguise[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 2478-2487. |
| 18 | Rafiey A, Yoshida Y. Fast and private submodular and $k$-submodular functions maximization with matroid constraints[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 7887-7897. |
| 19 | Gupta A, Ligett K, McSherry F, et al. Differentially private combinatorial optimization[C]//Proceedings of 21st Annual ACM-SIAM Symposium on Discrete Algorithms, 2010: 1106-1125. |
| 20 | Matou?ekJ.On approximate geometric $k$-clustering[J].Discrete and Computational Geometry,2000,24,61-84. |
| 21 | Dwork C. Differential privacy[C]//Proceedings of the 33rd International Colloquium on Automata, Languages, and Programming, 2006: 1-12. |
| 22 | Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[C]//Proceedings of the 3rd Theory of Cryptography Conference, 2006: 265-284. |
| 23 | Mcsherry F, Talwar K. Mechanism design via differential privacy[C]//Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007: 94-103. |
| 24 | McSherry F. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[C]//Proceedings of the 35th ACM SIGMOD International Conference on Management of Data, 2009: 19-30. |
| 25 | Fisher C. Over 267 million facebook users reportedly had data exposed online[EB/OL]. [2021-12-20]. https://www.engadget.com/2019/12/19/facebook-data-exposed-online/. |
| 26 | Daniel V, Kershner I. Personal data of all 6.5 million israeli voters is exposed[EB/OL]. [2021-12-20]. https://www.nytimes.com/2020/02/10/world/middleeast/israeli-voters-leak.html. |
| 27 | Bassily R, Smith A, Thakurta A. Private empirical risk minimization: Efficient algorithms and tight error bounds[C]//Proceedings of the IEEE 55th Annual Symposium on Foundations of Computer Science, 2014: 464-473. |
| 28 | Balcan M F, Dick T, Liang Y, et al. Differentially private clustering in high-dimensional euclidean spaces[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 322-331. |
| 29 | DworkC,RothA.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Computer Science,2014,9(3/4):211-407. |
| 30 | Wang Y, Wang Y X, Singh A. Differentially private subspace clustering[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 1000-1008. |
| 31 | Su D, Cao J, Li N, et al. Differentially private $k$-means clustering[C]//Proceedings of the 6th ACM Conference on Data and Application Security and Privacy, 2016: 26-37. |
| 32 | Feldman D, Xiang C, Zhu R, et al. Coresets for differentially private $k$-means clustering and applications to privacy in mobile sensor networks[C]//Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, 2017: 3-16. |
| 33 | Huang Z, Liu J. Optimal differentially private algorithms for $k$-means clustering[C]//Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2018: 395-408. |
| 34 | Nock R, Canyasse R, Boreli R, et al. $k$-variates++: more pluses in the $k$-means++[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 145-154. |
| 35 | Jones M, Nguyen H L, Nguyen T D. Differentially private clustering via maximum coverage[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 11555-11563. |
| 36 | Nguyen H L, Chaturvedi A, Xu E Z. Differentially private $k$-means via exponential mechanism and max cover[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 9101-9108. |
| 37 | Arthur D, Vassilvitskii S. $k$-means++: the advantages of careful seeding[C]//Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027-1035. |
| 38 | Nissim K, Stemmer U, Vadhan S P. Locating a small cluster privately[C]//Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2016: 413-427. |
| 39 | Blum A, Dwork C, McSherry F, et al. Practical privacy: the SuLQ framework[C]//Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2005: 128-138. |
| 40 | Nissim K, Raskhodnikova S, Smith A. Smooth sensitivity and sampling in private data analysis[C]//Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007: 75-84. |
| 41 | Zhang J, Xiao X, Yang Y, et al. PrivGene: differentially private model fitting using genetic algorithms[C]//Proceedings of the 13th ACM SIGMOD International Conference on Management of Data, 2013: 665-676. |
| 42 | Ghazi B, Kumar R, Manurangsi P. Differentially private clustering: Tight approximation ratios[C]//Proceedings of the 34th Conference on Neural Information Processing Systems, 2020: 33-93. |
| 43 | Makarychev K, Makarychev Y, Razenshteyn I. Performance of johnson-lindenstrauss transform for $k$-means and $k$-medians clustering[C]//Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019: 1027-1038. |
| 44 | KirszbraunM.ü ber die zusammenziehende und lipschitzsche transformationen[J].Fundamenta Mathematicae,1934,22(1):77-108. |
| 45 | Feldman D, Fiat A, Kaplan H, et al. Private coresets[C]//Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009: 361-370. |
| 46 | Stemmer U. Locally private $k$-means clustering[C]//Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2020: 548-559. |
| 47 | Nissim K, Stemmer U. Clustering algorithms for the centralized and local models[C]//Proceedings of the 29th Algorithmic Learning Theory, 2018: 619-653. |
| 48 | Stemmer U, Kaplan H. Differentially private $k$-means with constant multiplicative error[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, 2018: 5431-5441. |
| 49 | Hsu J, Khanna S, Roth A. Distributed private heavy hitters[C]//Proceedings of the 39th International Colloquium on Automata, Languages, and Programming, 2012: 461-472. |
| 50 | Chang A, Ghazi B, Kumar R, et al. Locally private $k$-means in one round[C]//IProceedings of the 38th International Conference on Machine Learning, 2021: 1441-1451. |
| 51 | Har-PeledS,MendelM.Fast construction of nets in low-dimensional metrics and their applications[J].SIAM Journal on Computing,2006,35(5):1148-1184. |
| 52 | Chaturvedi A, Jones M, Nguyen H L. Locally private $k$-means clustering with constant multiplicative approximation and near-optimal additive error[EB/OL]. [2021-12-19]. https://doi.org/10.48550/arXiv.2105.15007. |
| 53 | BassilyR,NissimK,StemmerU,et al.Practical locally private heavy hitters[J].Journal of Machine Learning Research,2020,21(16):1-42. |
/
| 〈 |
|
〉 |