Evolutionary analysis on cooperative behavior of local government and the public in the public health emergencies

Expand
  • 1. School of Business, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
    2. School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China

Received date: 2020-07-28

  Online published: 2021-12-11

Abstract

With the change of human living environment, public health emergencies occur frequently in recent years. The mutual cooperation between the public and local government is an inevitable choice to deal with the public health emergencies timely and efficiently. Based on the assumption of bounded rationality, this paper discusses the evolution process of the behaviors of the public and local governments, and obtains evolutionarily stable strategies under different conditions. MATLAB is applied for simulation and to analyze how the rewards and the punishments to the public from local governments, the punishments to local governments from the superior departments, and other factors influence the public and local government's strategies. The results in this work show that an effectively promoted mutual cooperation between the public and the government and an active epidemic prevention can be achieved by improving relevant subsidy policies, popularizing epidemic-related laws and regulations, increasing the punishment for violating the epidemic-related rules and regulations, and increasing local government penalties for loosening epidemic prevention.

Cite this article

Zhiqi XU, Yukun CHENG, Shuangliang YAO . Evolutionary analysis on cooperative behavior of local government and the public in the public health emergencies[J]. Operations Research Transactions, 2021 , 25(4) : 1 -14 . DOI: 10.15960/j.cnki.issn.1007-6093.2021.04.001

References

1 陈君硕. 习近平: 新冠肺炎是一次危机建国以来最大突发公卫事件[EB/OL]. (2020-02-23)[2020-06-28]. https://www.chinatimes.com/cn/realtimenews/20200223003124-260409?chdtv.
2 刘杨. 中央政治局常务委员会召开会议 研究当前新冠肺炎疫情防控和稳定经济社会运行重点工作 习近平主持会议[EB/OL]. (2020-03-04)[2020-06-28]. http://www.gov.cn/xinwen/2020-03/04/content_5486931.htm.
3 Kermack W O , McKendrick A G . A contribution to the mathematical theory of epidemics[J]. Royal Society, 1927, 115 (772): 700- 721.
4 Jari S , Kimmo K . Modeling development of epidemics with dynamic small-world networks[J]. Journal of Theoretical Biology, 2005, 234 (3): 413- 421.
5 Xu X J , Peng H O , Wang X M , et al. Epidemic spreading with time delay in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2005, 367, 525- 530.
6 Sun C , Hsieh Y H . Global analysis of an SEIR model with varying population size and vaccination[J]. Applied Mathematical Modelling, 2010, 34 (10): 2685- 2697.
7 Zhang J , Li J , Ma Z . Global dynamics of an SEIR epidemic model with immigration of different compartments[J]. Acta Mathematica Scientia, 2006, 26 (3): 551- 567.
8 曹盛力, 冯沛华, 时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49 (2): 178- 184.
9 耿辉, 徐安定, 王晓艳, 等. 基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报(自然科学与医学版), 2020, 41 (2): 175- 180.
10 Hou C , Chen J , Zhou Y , et al. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019(COVID-19): A well-mixed SEIR model analysis[J]. Journal of Medical Virology, 2020, 92 (7): 841- 848.
11 Prem K , Liu Y , Russell T W , et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study[J]. The Lancet Public Health, 2020, 5 (2): E261- E270.
12 Radulescu A, Cavanagh K. Management strategies in a SEIR model of COVID 19 community spread[J]. arXiv: 2003.11150, 2020.
13 Chen Y , Cheng J , Jiang Y , et al. A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification[J]. Journal of Inverse and Ill-posed Problems, 2020, 28 (2): 243- 250.
14 严阅, 陈瑜, 刘可伋, 等. 基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J]. 中国科学: 数学, 2020, 50 (3): 385- 392.
15 Li C , Zhang F , Cao C , et al. Organizational coordination in sustainable humanitarian supply chain: An evolutionary game approach[J]. Journal of Cleaner Production, 2019, 219, 291- 303.
16 张乐, 王慧敏, 佟金萍. 突发水灾害应急合作的行为博弈模型研究[J]. 中国管理科学, 2014, 22 (4): 92- 97.
17 Wang Z, Xu W, Yang J, et al. A game theoretic approach for resource allocation based on ant colony optimization in emergency management[C]// 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009: 1-4.
18 杨继君, 佘廉. 面向多灾点需求的应急资源调度博弈模型及优化[J]. 中国管理科学, 2016, 24 (8): 154- 163.
19 罗静, 李从东. 基于演化博弈的应急物资生产能力储备策略[J]. 工业工程, 2015, 18 (2): 15- 19.
20 Purohit S, Mantri S. Game theoretic multi-agent approach to traffic flow control[C]// 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2013: 1902-1905.
21 Yang J , Xu C . Emergency decision engineering model based on sequential games[J]. Systems Engineering Procedia, 2012, 5, 276- 282.
22 Smith J M , Price G R . The logic of animal conflict[J]. Nature, 1973, 246, 15- 18.
23 PeterD , Taylor , et al. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40, 145- 156.
24 谢识予. 有限理性条件下的进化博弈理论[J]. 上海财经大学学报, 2001, 3 (5): 3- 9.
25 易余胤, 刘汉民. 经济研究中的演化博弈理论[J]. 商业经济与管理, 2005, 188 (8): 8- 13.
26 倪大新. 新冠肺炎疫情防控两类策略和措施比较研究[EB/OL]. (2020-03-19)[2020-06-28]. http://cn.chinadaily.com.cn/a/202003/19/WS5e731e02a3107bb6b57a7913.html.
27 韩筱. 违反相关疫情防控措施, 你可能会面临什么法律责任?[EB/OL]. (2020-03-04)[2020-06-30]. http://bjhdfy.chinacourt.gov.cn/article/detail/2020/03/id/4829865.shtml.
28 刘佳, 连品洁. 商务部: 28个省市、170多个地市发放消费券190多亿元[EB/OL]. (2020-05-08)[2020-06-28]. http://travel.people.com.cn/n1/2020/0508/c41570-31701447.html.
29 韩筱. 违反相关疫情防控措施, 你可能会面临什么法律责任?[EB/OL]. (2020-03-04)[2020-06-30]. http://bjhdfy.chinacourt.gov.cn/article/detail/2020/03/id/4829865.shtml.
30 Friedman D . Evolutionary games in economics[J]. Econometrica, 1991, 59 (3): 637- 666.
31 Friedman D . On economic applications of evolutionary game theory[J]. Journal of Evolutionary Economics, 1998, 8 (1): 15- 43.
Outlines

/