Face recognition algorithm based on orthogonal and sparse constrained nonnegative tensor factorization

Expand
  • 1. School of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

Received date: 2020-05-08

  Online published: 2021-05-06

Abstract

As a feature extraction method, nonnegative tensor factorization has been widely used in image processing and pattern recognition for its advantages of preserving the internal structural features of data and strong interpretability. However, there are two problems in this method: one is that there is unnecessary correlation between the decomposed base images, which leads to more redundant information and takes up a lot of memory; the other is that the coding is not sparse enough, which leads to the expression of the image is not concise enough. These problems will greatly affect the accuracy of face recognition. In order to improve the accuracy of face recognition, a face recognition algorithm based on orthogonal and sparse constrained nonnegative tensor factorization is proposed. Firstly, orthogonal and sparse constraints are added to the traditional nonnegative tensor factorization to reduce the correlation between the base images and obtain sparse coding. Secondly, the original face image and the decomposed base image are used to calculate the low dimensional feature representation of the face. Finally, cosine similarity is used to measure the similarity between low-dimensional features and judge whether two face images represent the same person. Through experiments in AR database and ORL database, it is found that the improved algorithm can achieve better recognition effect.

Cite this article

Shan SONG, Yan FENG, Changqing XU . Face recognition algorithm based on orthogonal and sparse constrained nonnegative tensor factorization[J]. Operations Research Transactions, 2021 , 25(2) : 55 -66 . DOI: 10.15960/j.cnki.issn.1007-6093.2021.02.004

References

1 宋嘉庚. "刷脸"时代到来——人脸识别在金融行业的应用[J]. 智能城市, 2017, 3 (12): 79- 80.
2 张乐冰. 面向人脸识别欺骗攻击的数字图像取证技术研究[D]. 长沙: 湖南大学, 2019.
3 郑定成. 人脸识别技术在智慧校园的应用[J]. 集成电路应用, 2020, 37 (7): 132- 133.
4 柴雪艳. 基于Kinect的三维人脸识别系统及其在医保审核中的应用[D]. 成都: 电子科技大学, 2020.
5 Zhao W , Chellappa R , Phillips P J , et al. Face recognition: A literature survey[J]. Acm Computing Surveys, 2003, 35 (4): 399- 458.
6 方蔚涛, 马鹏, 成正斌, 等. 二维投影非负矩阵分解算法及其在人脸识别中的应用[J]. 自动化学报, 2012, 38 (9): 1503- 1512.
7 Lee D D , Seung H S . Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755): 788- 791.
8 Shashua A, Hazan T. Nonnegative tensor factorization with applications to statistics and computer vision[C]//Proceedings of the 22nd International Conference on Machine Learning, 2005, 792-799.
9 Zafeiriou S . Discriminant nonnegative tensor factorization algorithms[J]. IEEE Transactions on Neural Networks, 2009, 20 (2): 217- 235.
10 刘昶, 周激流, 何坤, 等. 正交非负CP分解的图像表示和识别[J]. 电子科技大学学报, 2011, 40 (6): 905- 910.
11 刘亚楠, 涂铮铮, 罗斌. 基于反馈稀疏约束的非负张量分解算法[J]. 计算机应用, 2013, 33 (10): 2871- 2873.
12 梁秋霞, 何光辉, 陈如丽, 等. 基于非负张量分解的人脸识别算法研究[J]. 计算机科学, 2016, 43 (10): 312- 316.
13 杨静, 王圣音, 高勇, 等. 场所视角下的城市空间交互态势特征分析——以北京市六环为例[J]. 地理与地理信息科学, 2019, 35 (6): 73- 80.
14 Cichocki A , Mandic D , De Lathauwer L , et al. Tensor decompositions for signal processing applications: from two-way to multiway component analysis[J]. Signal Processing Magazine IEEE, 2015, 32 (2): 145- 163.
15 Kolda T G , Bader B W . Tensor decompositions and applications[J]. SIAM Review, 2009, 51 (3): 455- 500.
16 Hoyer P O . Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5 (9): 1457- 1469.
17 王锦凯, 贾旭. 基于加权正交约束非负矩阵分解的车脸识别算法[J]. 计算机应用, 2020, 40 (4): 1050- 1055.
18 姜小燕, 孙福明, 李豪杰. 基于图正则化和稀疏约束的半监督非负矩阵分解[J]. 计算机科学, 2016, 43 (7): 77- 82.
19 胡学考, 孙福明, 李豪杰. 基于稀疏约束的半监督非负矩阵分解算法[J]. 计算机科学, 2015, 42 (7): 280- 284.
20 石春鹤, 吴成东. 基于加权稀疏非负矩阵分解的车脸识别算法[J]. 东北大学学报(自然科学版), 2019, 40 (10): 1376- 1380.
21 Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems, 2000, 535-541.
22 Yang J , Zhang D D , Frangi A F , et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (1): 131- 137.
23 Liu J , Liu J , Wonka P , et al. Sparse non-negative tensor factorization using columnwise coordinate descent[J]. Pattern Recognition, 2012, 45 (1): 649- 656.
Outlines

/