[1] Cominetti R, Dussault J P. Stable exponential-penalty algorithm with superlinear convergence [J]. Journal of Optimization Theory and Applications, 1994, 83(2): 285-309.
[2] Conn A R, Gould N I M, Toint Ph L. Methods for nonlinear constraints in optimization calculation [M]//The State of the Art in Numerical Analysis. Oxford: Clarendon Press, 1997, 363-390.
[3] Fletcher R. Penalty functions [M]//Mathematical Programming, Berlin Heidelberg: Springer-Verlag, 1983, 87-114.
[4] Lucidi S. New results on a continuously differentiable exact penalty function [J]. SIAM Journal on Optimization, 1992, 2(4): 558-574.
[5] Pillo G D, Groppo L. A continuously differentiable exact penalty function [J]. SIAM Journal on Control and Optimization, 1985, 23(1): 72-84.
[6] Pillo G D, Groppo L. An exact penalty method with global convergence properties for nonlinear programming problems [J]. Mathematical Programming, 1986, 36: 1-18.
[7] Pillo G D. Exact penalty methods [M]//Algorithms for Continuous Optimization, Netherlands: Kluwer Academic Publishers, 1994, 209-253.
[8] Shanno D F, Simantiraki E M. Interior point methods for linear and nonlinear programming [M]//The State of the Art in Numerical Analysis, Oxford: Clarendon Press, 1997, 339-362.
[9] Tseng P, Bertsekas D P. On the convergence of the exponential multiplier method for convex programming [J]. Mathematical Programming, 1993, 60: 1-19.
[10] 尚有林, 刘牧华, 李璞. 一种新的逼近精确罚函数的罚函数及性质 [J]. 运筹学学报, 2012, 16(1): 56-66.
[11] Yu C, Teo K L, Bai Y. An exact penalty function method for nonlinear mixed discrete programming Problems [J]. Optimization Letters, 2013, 7(1): 23-38.
[12] 王长钰, 赵文玲. 约束优化问题的一类光滑罚算法的全局收敛特性 [J]. 运筹学学报, 2015, 19(3): 151-160.
[13] Ma C, Zhang L S. On an exact penalty function method for nonlinear mixed discrete programming problems and its applications in search engine advertising problems [J]. Applied Mathematics and Computation, 2015, 271: 642-656.
[14] Huyer W, Neumaier A. A new exact penalty function [J]. SIAM Journal on Optimization, 2003, 13(4): 1141-1158.
[15] Lian S J, Zhang L S. A simple smooth exact penalty function for smooth optimization problems [J]. Journal of Systems Science \& Complexity, 2012, 25(3): 521-528.
[16] Mangasarian O L, Fromovitz S. The Fritz John necessary optimality conditions in the presence of equality and inequality constraints [J]. Journal of Mathematical Analysis and Applications, 1967, 17: 37-47. |