Operations Research Transactions ›› 2013, Vol. 17 ›› Issue (2): 53-69.doi: O225
• Original Articles • Previous Articles Next Articles
REN Fengying1,2,*,LI Xingsi1
Received:
2011-11-15
Online:
2013-06-15
Published:
2013-06-15
REN Fengying,LI Xingsi. Pricing and hedging in the incomplete finance market[J]. Operations Research Transactions, 2013, 17(2): 53-69.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Black F, Scholes M. The pricing of optons and corporate liabilities [J]. Journal of Polotical Economy, 1973, 81: 637-659. Jouini E. Arbitrage and control problems in finance: a presentation [J]. Journal of Mathematical Economics, 2001, 35: 167-183. Davis M H A. Valuation, hedging and investment in incomplete financial markets [M]//Applied Mathematics Entering the 21st Century: Invite Talks from the ICIAM 2003 Congress, Philadelphia: Society for Industrial and Applied Mathematics, 2004. Staum J. Incomplete Markets [M]//Handbooks in OR and MS, Elsevier, 2006, 511-563. Arrow K, Debreu G. Existence of equilibrium for a competitive economy [J]. Econometrica, 1954, 22: 265-290. Merton R C. An intertemporal capital asset pricing model [J]. Economitrica, 1973, 41: 867-888. Lucas R. Asset prices in an exchange economy [J]. Econometrica, 1978, 46: 1429-1445. Breeden D. An intertemporal asset pricing model with stochastic consumption and investment opportunities [J]. Journal of Financial Economics, 1979, 7: 265-296. Cox J C, Ingersoll J E, Ross S. An intertemporal general equilibrium model of asset prices [J]. Economitrica, 1985, 53: 363-384. Cuoco D, He H. Dynamic aggregation and computation of equilibria in finite-dimensional economies with incomplete financial markets [J]. Annals of Economics and Finance, 2001, 2: 265-296. Duffie D, Shafer W. Equilibrium in incomplete markets: I: A basic model of generic existence [J]. Journal of Mathematical Economics, 1985, 14: 285–300. Cuoco, D. Optimal consumption and equilibrium prices with portfolio constraints and stochastic income [J]. Journal of Economic Theory, 1997, 72: 33-73. Magill M, Quinzii M. Theory of incomplete markets [M]. Cambridge: MIT Press, 1996. Rubinstein M. Implied binomial trees [J]. Journal of Finance, 1994, 49(3): 771-818. Jackwerth J, Rubinstein M. Recovering probability distributions from option prices [J]. Journal of Finance, 1996, 51: 1611-1631. Jackwerth J. Recovering risk aversion from option prices and realized returns, [J]. Review of Financial Studies, 2000, 13: 433-451. Buchen P, Kelly M. The maximum entropy distribution of an asset inferred from option prices [J]. Journal of Financial and Quantitative Analysis, 1996, 31(1): 143-159. Stutzer M. A simple nonparametric approach to derivative security valuation [J]. Journal of Finance, 1996, 51: 1633-1652. Avellaneda M. Minimum-relative-entropy calibration of asset pricing models [J]. International Journal of Theoretical and Applied Finance, 1998, 1-28. Ait-Sahalia Y, Lo A. Nonparametric estimation of State-price densities implicit in financial asset prices [J]. Journal of Finance, 1998, 53(2): 499-547. Cont R. Beyond implied volatility [M]//Econophysics. Dordrecht: Kluwer, 1997. Jackwerth J C. Option implied risk-neutral distributions and implied binomial trees: A literature review [J]. Journal of Derivatives, 1999, 7(2): 66-82. Gerber H U, Shiu S W. Option pricing by Esscher transforms [J]. Transactions of society of actuaries, 1994, 46: Wang S S. A universal framework for pricing financial and insurance risks [J]. ASTIN Bulletin, 2002, 31: 213-234. Wang S S. Equilibrium pricing transforms: New results using Buhlmann's 1980 economic model [J]. ASTIN Bulletin, 2003, 33: 57-73. Reesor R M. Relative entropy, distortion, the bootstrap and risk [D]. Waterloo: University of Waterloo, 2001. Hodges S D, Neuberger A. Optimal replication of contingent claims under transactions costs [J]. Review of Futures Markets, 1989, 8: 222-239. Davis M H A. Option pricing in incomplete markets [M]//Mathematics of derivative se-curities. Cambridge: Cambridge University Press, 1997, 216-226. Carmona R. Indifference pricing: Theory and applications [M]. Princeton: Princeton University Press, 2008. Lo A. Semi-parametric upper bounds for option prices and expected payoffs [J]. Journal of Financial Economics, 1987, 19: 373-388. Grundy B. Option prices and the underlying asset's return distribution [J]. Journal of Finance, 1991, 46(3): 1045-1070. Boyle P, Lin X S. Bounds in contingent claims based on several assets [J]. Journal of Financial Economic, 1997, 46:383-400. Bertsimas D, Popescu I. On the relation between option and stock prices: An optimization approach [J]. Operations Research, 2002, 50:358-374. Merton R C. Theory of rational option pricing [J]. Bell Journal of econoics and Management Science, 1973, 4: 141-183. Perrakis S, Pyan P J. Option pricing bounds in discrete time [J]. Journal of Finance, 1984, 39: 519-525. Levy H. Upper and lover bponds of put and call option value: Stochastic dominance approach [J]. Journal of Finance, 1985, 40: 1283-1301. Ritchken P H. On option pricing bounds [J]. Journal of Finance, 1985, 40: 1219-1233. Ritchken P H, Kuo S. Stochastic dominance and decreasing absolute risk averse option pricing bounds [J]. Management Science, 1989, 35(1): 51-59. Constantinides G M, Perrakis S. Stochastic dominance bounds on derivative prices in a multiperiod economy with proportional transaction costs [J]. Journal of Economic Dynamic and Control, 2002, 26(1): 323-1352. Constantinides G M, Perrakis S. Stochastic donimance bounds on American option prices in markets with frictions [J]. Review of Finance, 2007, 71-115. Rosenberg J, Engle R. Empirical pricing kernels [J]. Journal of Financial Economics, 2002, 64: 341-372. Detlefsen K, Hardle W K, Moro R A. Empirical pricing kernels and investor preferences [R/OL]. Berlin: Humboldt University of Berlin, [2007/01/01], http://ideas.repec.org/p/hum/wpaper. Jackwerth J C. Option-implied risk-neutral distributions and risk aversion [M]. Charlotteville: Research Foundation of AIMR, 2004. Barone-Adesi G, Dall'O H. Is the pricing kernel monotone? [J]. ACRN Journal of Finance and Risk Perspectives, 2012, 1(2): 43-68. Follmer H, Sondermann D. Hedging of non-redundant contingent claims [M]//Contributions to Mathematical Economics, North-Holland: [s.n.], 1986, 205-223. Follmer H, Schweizer M. Hedging of contingent claims under incomplete information [M]//Applied stochastic analysis, New York: Gordon and Breach, 1991, 389-414. Schweizer M. Option hedging for semimartingales [J]. Stochastic Processes and their Application, 1991, 37: 339-363. Schweizer M. On the minimal martingale measure and the follmer-Schweizer decomposition [J]. Stochastic Analysis and Applications, 1995, 13: 573-599. Delbaen F, Schachermayer W. A simple counterexample to several problems in the theory of asset pricing [J]. Mathematical Finance, 1998, 8(1): 1-11. Bouleau N, Lamberton D. Residual risks and hedging strategies in markovian markets [J]. Stochastic Processes and their Applications, 1989, 33: 131-150. Duffie D, Richardson H R. Mean-variance hedging in continuous time [J]. Annals of Applied Probability, 1991, 1: 1-15. Schweizer M. Approximation pricing and the variance-optimal martingale measure [J]. Annals of Probability, 1996, 24: 206-236. Cerny A, Kallsen J. On the structure of general mean-variance hedging strategies [J]. The Annals of Probability, 2007, 35(5): 1479-1531. Kallsen J, Pauwels A. Variance-optimal hedging for time-changed Levy processes [J]. Applied Mathematical Finance, 2011, 18(1): 1–28. Follmer H, Leukert P. Quantile Hedging [J]. Finance Stochastic, 1999, 3: 251-273. Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk [J]. Mathematical Finance, 1999, 9: 203-228. Follmer H, Schied A. Convex measures of risk and trading constraints [J]. Finance and Stochastics, 2002, 6: 429-447. Frittelli M, Rosazza-Gianin E. Putting order in risk measures [J]. Journal of Banking and Finance, 2002, 26: 1473-1486. Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J]. Journal of Risk, 2000, 2: 21-41. Follmer H, Leukert P. Efficient hedging: cost versus shortfall risk [J]. Finance and Stochastics, 2000, 4(2): 117-146. Nakano Y. Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints [J]. Applied Mathematical Finance, 2003, 10(2): 163-181. Nakano Y. Efficient hedging with coherent risk measures [J]. Journal of Mathematical Analysis and Applications, 2004, 293(1): 345-354. Rudloff B. Coherent hedging in incomplete markets [J]. Quantitative Finance, 2009, 9(2): 197-206. Rudloff B. Convex hedging in incomplete markets [J]. Applied Mathematical Finance, 2007, 14(5): 437-452. Cochrane J H, Saa-Requejo J. Beyond arbitrage: good deal asset price bounds in incomplete markets [J]. Journal of Political Economy, 2000, 108: 79-119. Bjork T, Slimko I. Towards a general theory of good-deal bounds [J]. Review of Finance, 2006, 10: 221-260. Bernardo A E, Ledoit O. Gain, loss and asset pricing [J]. Journal of Political Economy, 2000, 108: 144-172. Hansen L P, Jagannathan R. Implications of security market data for models of dynamic economies [J]. Journal of Political Economy, 1991, 99(2): 225-262. Snow K N. Diagnosing Asset Pricing Models Using the Distribution of Asset Returns [J]. Journal of Finance, 1991, 46(3): 955-983. Stutzer M. A bayesian approach to diagnosis of asset pricing models [J]. Journal of Econometrics, 1995, 68: 367-397. Bansal R, Lehmann B N. Growth-optimal portfolio restrictions on asset pricing models [J]. Macroeconomic Dynamics 1997, 1: 333-354. Cerny A. Generalized sharpe ratios and asset pricing in incomplete markets [J]. European Finance Review, 2003, 7: 191-233. Kloppel S, Schweizer M. Dynamic utility-based good-deal bounds [J]. Statistics and Decisions, 2007, 25: 285-309. Jaschke S, Kuchler U. Coherent risk measures and good-deal bounds [J]. Finance and Stochastics, 2001, 5: 181-200. Staum J. Fundamental theorems of asset pricing for good deal bounds [J]. Mathematical Finance, 2004, 14(2): 141-161. Carr P, Geman H, Madan D B. Pricing and hedging in incomplete markets [J]. Journal of Financial Economics, 2001, 62: 131-167. Cherny A. Pricing with coherent risk [J]. Theory of Probability and its Applications, 2007, 52: 506-540. |
[1] | YU Jian, JIA Wensheng. Fixed points and equilibrium points [J]. Operations Research Transactions, 2020, 24(2): 14-22. |
[2] | LIN Yang, WANG Yingming. Two-sided game matching with uncertain preference ordinal [J]. Operations Research Transactions, 2020, 24(1): 155-162. |
[3] | XUE Juan, GAO Hongwei, JIANG Hui, ZHOU Yunxun. Two-person stochastic game model of data transmission based on slotted ALOHA protocol [J]. Operations Research Transactions, 2019, 23(4): 45-58. |
[4] | ZHANG Songtai, XU Xiuli. Equilibrium analysis in the M/M/1 queue with two types of breakdowns [J]. Operations Research Transactions, 2019, 23(4): 131-142. |
[5] | HOU Lina, SUN Hailin. Two-stage stochastic non-cooperative multi-vendor game under the transportation network-based on stochastic variational inequarity [J]. Operations Research Transactions, 2019, 23(3): 91-108. |
[6] | GAO Leifu, YAN Tingting. A class of generalized mond-weir type duality theory for mathematical programs with equilibrium constraints [J]. Operations Research Transactions, 2019, 23(2): 95-103. |
[7] |
MENG Xudong, WANG Sanhua, GONG Xunhua.
Optimal conditions for the lower semicontionuity of efficient solution mapping to parametric generalized set-vector equilibrium problems
[J]. Operations Research Transactions, 2018, 22(3): 79-88.
|
[8] |
CHEN Yansheng, ZOU Huiwen, CAI Lixiong, ZHU Qun.
The pricing of single-name CDS based on product market and capital market in general equilibrium model
[J]. Operations Research Transactions, 2018, 22(1): 119-128.
|
[9] | WANG Lei, LIN Chong, GU Yan, LIU Cui, GAO Hongwei. Strategic stability of cooperative solutions in infinite stage network games [J]. Operations Research Transactions, 2018, 22(1): 77-86. |
[10] | ZHANG Long, ZHANG Yuzhong, BAI Qingguo. Existence of Nash equilibria in scheduling game on limited machines with activation cost [J]. Operations Research Transactions, 2018, 22(1): 87-96. |
[11] | WANG Chun, QIU Xiaoling, WANG Nengfa, CHEN Pinbo. Stability to bounded rationality for nonconvexity [J]. Operations Research Transactions, 2016, 20(3): 107-120. |
[12] | LUO Guowang, PENG Yanfang, LIU Yanmin, HUANG Jianwen. Continuity of the solution set map to parametric weak vector equilibrium problems [J]. Operations Research Transactions, 2016, 20(1): 118-124. |
[13] | XU Yisong, WANG Yingming. A ranking method for the assignment problem with mutiple optimal solutions [J]. Operations Research Transactions, 2014, 18(2): 96-102. |
[14] | HUANG Zhenghai, LIN Guihua, XIU Naihua. Several developments of variational inequalities and complementarity problems, bilevel programming and MPEC [J]. Operations Research Transactions, 2014, 18(1): 113-133. |
[15] | LI Jianling, XIE Qin, JIAN Jinbao. Review on constraint qualifications and optimality conditions for mathematical programs with equilibrium constraints [J]. Operations Research Transactions, 2013, 17(3): 73-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||