Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs [M]. New York: Marcel Dekker, 1998. Slater P J. R-domination in graphs [J]. J Assoc Comput Mach, 1976, 23: 446-450. Liu C L. Introduction to combinatorial mathematics [M]. New York-Toronto-London: McGraw-Hill Book Co, 1968: 393. Boland J W, Haynes T W, Lawson L M. Domination from a Distance [J]. Congr Numer, 1994, 103: 89-96. Chang G J, Nemhauser G L. The k-domination and k-stability problems in sun-free chordal graphs [J]. SIAM Journal on Algebraic Discrete Methods, 1984, 5: 332-345. Farber M. Applications of linear programming duality to problems involving independence and domination [R]. Technical Report 81-13, Department of Computer Science, Simon Fraser University, Canada, 1981. Fricke G H, Henning M A, Oellermann O R, Swart H C. An algorithm to find two distance domination parameters in a graph [J]. Discrete Appl Math, 1996, 68(1-2): 85-91. Gavlas H, Schultz K, Slater P J. Efficient open domination in graphs [J]. Sci Ser A Math Sci (N.S.),2003, 6: 77-84. Henning M A, Oellermann O R, Swart H C. Relating pairs of distance domination parameters [J]. J Combin Math Combin Comput, 1995, 18: 233-244. Chartrand G, Harary F, Hossain M, Schultz K. Exact 2-step domination in graphs [J]. Math Bohem, 120 1995, 120(2): 125-134. Henning M A. Distance domination in graphs [M]// Haynes T W, Hedetniemi S T, Slater P J editors, Domination in Graphs: Advanced Topics, chapter 12. Marcel Dekker, Inc., 1997. Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NP-completeness [M]. San Francisco: WH Freeman & Co, 1979. McRae A A. Generalizing NP-Completeness Proofs for Bipartite and Chordal Graphs [D]. Ph D thesis, Clemson Univ, 1994. |