\item{[1]} Youness E A. $E$-convex sets, $E$-convex functions, and $E$-convex programming [J].{\it Journal of Optimization Theory and Application}, 1999, {\bf102}(2): 439-450.\item{[2]} Youness E A. Characterization of efficient solutions of multi-objective$E$-convex programming problems [J]. {\it Applied Mathematics and Computation}m, 2004, {\bf151}(3): 755-761.\item{[3]} Yang X M. On E-convex sets, $E$-convex functions, and $E$-convex programming [J]. {\itJournal of Optimization Theory and Application,} 2001, {\bf109}: 699-704.\item{[4]} Chen X S. Some properties of semi-$E$-convex functions [J]. {\itJournal of Mathematics Applied}, 2002, {\bf275}: 251-262.\item{[5]} 李林成,孔维丽,黄辉. $E$凸函数的次微分[J]. {\kaishu云南大学学报: 自然科学版,} 2006, {\bf28}(5): 369-373.\item{[6]} 景书杰,宋虹颖. $E$凸函数的方向导数[J]. {\kaishu吉林师范大学学报: 自然科学版}, 2009, 1: 15-19.\item{[7]} Clarke F H, Stem R J.Nonsmooth Analysis and Control Theory [M]. New York: Springer Verlag, 1998.\item{[8]} Wu Z L, Wu S Y. Characterization of the solution sets of a convexprogram and a variational inequality problem [J].{\it Journal of Optimization Theory and Applications}, 2006, {\bf130}(2): 339-358.\item{[9]} Rockafellar R T. Convex Analysis [M]. Princeton: Princeton University Press, 1970.\item{[10]} 景书杰,宋虹颖. E次微分的一些新性质[J]. {\kaishu安徽理工大学学报: 自然科学版}, 2009, {\bf1}(29): 72-77. |