运筹学学报 >
2017 , Vol. 21 >Issue 4: 135 - 152
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2017.04.009
1-平面图及其子类的染色
收稿日期: 2017-07-07
网络出版日期: 2017-12-15
基金资助
陕西省自然科学基础研究计划面上基金(No. 2017JM1010), 中央高校基本科研业务费(No. JB170706), 国家自然科学基金青年科学基金(No. 11301410), 国家级大学生创新创业训练计划(No. 201710701125)
The coloring of the class of 1-planar graphs and its subclasses
Received date: 2017-07-07
Online published: 2017-12-15
如果图G可以嵌入在平面上, 使得每条边最多被交叉1次, 则称其为1-可平面图, 该平面嵌入称为1-平面图. 由于1-平面图G中的交叉点是图G的某两条边交叉产生的, 故图G中的每个交叉点c都可以与图G中的四个顶点(即产生c的两条交叉边所关联的四个顶点)所构成的点集建立对应关系, 称这个对应关系为\theta. 对于1-平面图G中任何两个不同的交叉点c_1与c_2(如果存在的话), 如果|\theta(c_1)\cap \theta(c_2)|\leq 1, 则称图G是NIC-平面图; 如果|\theta(c_1)\cap \theta(c_2)|=0, 即\theta(c_1)\cap \theta(c_2)=\varnothing, 则称图G是~IC-平面图. 如果图G可以嵌入在平面上, 使得其所有顶点都分布在图G的外部面上, 并且每条边最多被交叉一次, 则称图G为外1-可平面图. 满足上述条件的外1-可平面图的平面嵌入称为外1-平面图. 现主要介绍关于以上四类图在染色方面的结果.
张欣, 刘维婵 . 1-平面图及其子类的染色[J]. 运筹学学报, 2017 , 21(4) : 135 -152 . DOI: 10.15960/j.cnki.issn.1007-6093.2017.04.009
A graph G is 1-planar if it can be embedded on a plane so that each edge is crossed by at most one other edge, and such a 1-planar embedding of G is a 1-plane graph. Since every crossing c in a 1-plane graph is generalized by one edge crossing the other edge, there is a mapping \theta from c to a set of four vertices of G that are the end-vertices of the two edges crossing at c. For any two distinct crossings c_1 and c_2 (if exist) of a 1-plane graph G, if |\theta(c_1)\cap \theta(c_2)|\leq 1, then G is an NIC-planar graph, and if |\theta(c_1)\cap \theta(c_2)|=0, that is, \theta(c_1)\cap \theta(c_2)=\varnothing, then G is an IC-planar graph. If a graph G can be embedded on a plane so that all vertices are on its outerface and each edge is crossed by at most one other edge, then G is an outer-1-planar graph, and such an embedding of G is an outer-1-plane graph. This paper surveys the results on the colorings of the above four classes of graphs.
Key words: 1-planar graph; NIC-planar graph; IC-planar graph; outer-1-planar graph; coloring
/
| 〈 |
|
〉 |