运筹学

一般梯形模糊逼近算子及其在模糊运输问题中的应用

展开
  • 1. 广西师范大学漓江学院理工系, 广西桂林 541006

收稿日期: 2015-09-14

  网络出版日期: 2017-03-15

基金资助

2016年度广西高校中青年教师基础能力提升项目(No. KY2016LX555), 2014年广西师范大学漓江学院科研项目(No. 201410B)

A generalized trapezoidal approximation operator and  its application to fuzzy transportation problems

Expand
  • 1. Department of Science and Technology, Lijiang College of Guangxi Normal University, Guilin 541006, Guangxi, China

Received date: 2015-09-14

  Online published: 2017-03-15

摘要

研究运输成本信息为一般模糊数的模糊运输问题. 首先, 在保持一般模糊数的核不变的条件下, 建立一般模糊数与一般梯形模糊数的距离最小优化模型, 通过求解模型得到一般模糊数的一般梯形模糊逼近算子, 并给出该逼近算子具有的性质如数乘不变性、平移不变性、连续性等. 然后利用该逼近算子将一般模糊运输信息表转换成一般梯形模糊运输信息表, 再根据已有GFLCM和GFMDM算法得到模糊运输问题的近似最优解, 最后给出具体算例分析说明方法的有效性和合理性.

本文引用格式

谢海斌, 陈迪三, 梁燕燕 . 一般梯形模糊逼近算子及其在模糊运输问题中的应用[J]. 运筹学学报, 2017 , 21(1) : 65 -77 . DOI: 10.15960/j.cnki.issn.1007-6093.2017.01.007

Abstract

This paper studies fuzzy transportation problems with general fuzzy transportation costs. Firstly, by preserving the core of a generalized fuzzy number, the minimal optimization model is structured based on the distance between general fuzzy numbers and general trapezoidal fuzzy numbers. By solving the optimization model, a generalized trapezoidal approximation operator is obtained and some properties of the operator are studied such as scale invariance, translation invariance, continuity. Secondly, the approximation operator is used to convert generalized fuzzy transportation table to generalized trapezoidal fuzzy transportation table. Moreover, the existing GFLCM and GFMDM algorithms are used to get the nearest optimal solution of fuzzy transportation problems. Finally, a numerical example is presented to illustrate the feasibility and validity of the proposed method.

参考文献

[1] Hitchcock F L. The distribution of a product from several sources to numerous localities [J]. Journal of Mathematical Physics, 1941, 20: 224-230.
[2] Yang L X, Liu L Z. Fuzzy fixed charge solid transportation problem and algorithm [J]. Applied Soft Computing, 2007, 7: 879-889.
[3] Dinagar D S, Palanivel K. The transportation problem in fuzzy environment [J]. International Journal of Algorithms, Computing and Mathematics, 2009, 2(3): 65-71.
[4] Pandian P, Natarajan G. A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems [J]. Applied Mathematical Sciences, 2010, 4(2): 79-90.
[5] Chen S H. Operations on fuzzy numbers with fuzzy principal [J]. Tamkang Journal of Management Sciences, 1985, 6: 13-25.
[6] Kaur A, Kumar A. A new method for solving fuzzy transportation problems using ranking function [J]. Applied Mathematical Modeling, 2011, 35(12): 5652-5661.
[7] Kaur A, Kumar A. A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers [J]. Applied Soft Computing, 2012, 12(3): 1201-1213.
[8] Ebrahimnejad A. A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers [J]. Applied Soft Computing, 2014, 19: 171-176.
[9] 李春萍, 袁国强, 刘晓俊. 带有模糊参数的运输期望值模型 [J]. 数学的实践与认识, 2012, 42(2): 10-15.
[10] 郭嗣琮, 张景姝. 具有弹性约束的模糊运输问题求解 [J]. 运筹与管理, 2012, 21(6): 10-16.
[11] 胡勋锋, 李登峰. 满意度优化运输问题 [J]. 运筹学学报, 2014, 18(4): 36-44.
[12] Liu S T, Kao C. Solving fuzzy transportation problems based on extension principle [J]. European Journal of Operational Research, 2004, 153: 661-674.
[13] Abbasbandy S, Hajjari T. Weight trapezoidal approximation preserving cores of a fuzzy number [J]. Computers and Mathematics with Applications, 2010, 59: 3066-3077.
[14] Ban A, Brandas A, Coroianu L, et al. Approximation of a fuzzy numbers by trapezoidal fuzzy numbers by preserving the value and ambiguity [J]. Computers and Mathematics with Applications, 2011, 61: 1379-1401.
[15] Grzegorzewski P, Winiarska K P. Natural trapezoidal approximations of fuzzy numbers [J]. Fuzzy Sets and Systems, 2014, 250: 90-109.
[16] Chen S J, Chen S M. Fuzzy risk analysis on the ranking of generalized trapezoidal fuzzy \linebreak number [J]. Applied Intelligence, 2007, 26: 1-11.
[17] Grzegorzewski P. Metrics and orders in space of fuzzy numbers [J]. Fuzzy Sets and Systems, 1998, 77: 83-94.
文章导航

/