运筹学

有限理性下参数最优化问题解的稳定性

展开
  • 1. 贵州大学数学与统计学院, 贵阳 550025

收稿日期: 2015-08-31

  网络出版日期: 2016-12-15

基金资助

国家自然科学基金(Nos. 11271098, 11161008), 贵州省科学技术基金(No. 20132116), 贵州大学青年教师基金(No. 2012002)

 Stability of solutions to parametric optimization problems under bounded rationality

Expand
  • 1. School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China

Received date: 2015-08-31

  Online published: 2016-12-15

摘要

主要研究有限理性下参数最优化问题解的稳定性. 即在两类扰动即目标函数及可行集二者, 目标函数、可行集及参数三者分别同时发生扰动的情形下, 对参数最优化问题引入一个抽象的理性函数, 分别建立了参数最优化问题的有限理性模型M, 运用``通有''的方法, 得到了上述两种扰动情形下相应的有限理性模型M的结构稳定性及对\varepsilon-平衡(解)的鲁棒性, 即有限理性下绝大多数的参数最优化问题的解都 是稳定的, 并以一个例子说明所得的稳定性结果均是正确的.

本文引用格式

杨光惠, 杨辉, 向淑文 . 有限理性下参数最优化问题解的稳定性[J]. 运筹学学报, 2016 , 20(4) : 1 -10 . DOI: 10.15960/j.cnki.issn.1007-6093.2016.04.001

Abstract

 Parametric optimization has been widely applied in game theory, control theory, economics and management, engineering technology, etc. Recently, the stability of solutions to parametric optimization has attracted increasing attention. This paper mainly studies the stability of solutions to parametric optimization problems under bounded rationality. By introducing an abstract rationality function, two rational models M are established with two types of perturbations: the perturbation of both objective functions and feasible sets, and the perturbation of objective functions, feasible sets and parameters simultaneously. For the two perturbations above, by the ``generic'' method, the rational model M is structurally stable and is robust to \varepsilon-equilibria (or solutions), respectively. That is, the solutions to most of parametric optimization problems are stable in the sense of Baire category. Finally, an example is illustrated.

参考文献

[1] 俞建. 多目标参数最优化问题的稳定性 [J]. 贵州科学, 1991, 9(4): 263-267.
[2] 陈源. 含参数最优化问题的解的通有唯一性 [J]. 衡阳师范学院学报, 2005, 26(3): 7-9.
[3] 杨光惠, 向淑文. 一致度量拓扑意义下参数最优化问题解的稳定性 [J]. 贵州大学学报(自然科学版), 2009, 26(5): 19-22.
[4] Simon H A. Bounded rationality in social science: today and tomorrow [J]. Mind and Society, 2000,  1(1): 25-39.
[5] Anderlini L, Canning D. Structural stability implies robustness to bounded rationality [J], Journal of Economic Theory, 2001, 101(2): 395-422.
[6] Yu C, Yu J. On structural stability and robustness to bounded rationality [J]. Nonlinear Analysis: Theory, Methods & Applications, 2006, 65(3): 583-592.
[7] Yu C, Yu J. Bounded rationality in multiobjective games [J]. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(3): 930-937.
[8] Yu J, Yang H, Yu C. Structural stability and robustness to bounded rationality for non-compact cases [J]. Journal of Global Optimization, 2009, 44(1): 149-157.
[9] 俞建. 几类考虑有限理性平衡问题解的稳定性 [J]. 系统科学与数学, 2009, 29(7): 999-1008.
[10] 俞建. 博弈论与非线性分析 [M]. 北京: 科学出版社, 2008.
[11] Klein E, Thompson A.  Theory of Correspondences [M]. New York: Wiley, 1984.
[12] Yu J. Essential weak efficient solution in multiobjective optimization problems [J]. Journal of Mathematical Analysis and Applications, 1992, 166(1): 230-235.
文章导航

/