运筹学

状态相依效用下的超额损失再保险--投资策略

展开
  • 1. 广东工业大学应用数学学院,广州 510006; 2. 广东工业大学管理学院,广州 510006;

收稿日期: 2015-09-24

  网络出版日期: 2016-03-15

基金资助

国家自然科学基金(Nos.  71501050, 71301031), 广东省自然科学基金(No. 2014A030310195), 广东工业大学校内博士启动基金

Optimal excess-of-loss reinsurance and investment strategy under state-dependent utility function

Expand
  • 1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China; 2. School of Management, Guangdong University of Technology, Guangzhou 510006, China

Received date: 2015-09-24

  Online published: 2016-03-15

摘要

假设保险公司的盈余过程和金融市场的资产价格过程均由可观测的连续时间马尔科夫链所调节, 以最大化终端财富的状态相依的期望指数效用为目标, 研究了保险公司的超额损失再保险-投资问题. 运用动态规划方法, 得到最优再保险-投资策略的解析解以及最优值函数的半解析式.  最后, 通过数值例子, 分析了模型各参数对最优值函数和最优策略的影响.

本文引用格式

谷爱玲, 陈树敏 . 状态相依效用下的超额损失再保险--投资策略[J]. 运筹学学报, 2016 , 20(1) : 91 -104 . DOI: 10.15960/j.cnki.issn.1007-6093.2016.01.009

Abstract

This paper studies an optimal excess-of-loss reinsurance and investment problem for an insurer, and aims to maximize the expected exponential utility from her terminal wealth with a state-dependent utility function. It is assumed that the surplus of the insurer and the financial market are modulated by an observable continuous-time Markov chain. By applying stochastic control theory, the explicit expression of  optimal reinsurance-investment strategy is obtained. Finally, the impact of some parameters on the optimal strategy and optimal value function is given.

参考文献

[1] Irgens C, Paulsen J, Optimal control of risk exposure, reinsurance and investments for insurance portfolio [J]. Insurance: Mathematics and Economics, 2004, 35: 21-51.
[2] Promislow D S, Young V R. Minimizing the probability of ruin when claims follow Brownian motion with drift [J]. North American Actuarial Journal, 2005, 9: 109-128.
[3] Chen S M, Li Z F. Optimal investment-reinsurance strategy for an insurance company with VaR constraint [J]. Insurance: Mathematics and Economics, 2010, 47: 144-153.
[4] Zeng Y, Li Z F. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria [J]. Journal of Industrial and Management Optimization, 2012, 8: 673-690.
[5] Zhang X M, Zhou M, Guo J Y. Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting [J]. Applied Stochastic Models in Business and Industry, 2007, 23: 63-71.
[6] Gu A L, Guo X P, Li Z F, et al. Optimal control of excess-of-loss reinsurance  and investment for insurers under a CEV model [J]. Insurance: Mathematics and Economics, 2012, 51: 674-684.
[7] Zhao H, Rong X M, Zhao Y G. Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model [J]. Insurance: Mathematics and Economic, 2013, 53: 504-514.
[8] Bai L H, Cai J, Zhou M. Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting [J]. Insurance: Mathematics and Economics, 2013, 53: 664-670.
[9] Zhou X Y, Yin G. Markowitz's mean-variance portfolio selection with regime switching: A continuous time model [J]. SIAM Journal on Control and Optimization, 2003, 42: 1466-1482.
[10] Capponi A, Figueroa-Lopez J E. Dynamic portfolio optimization with a defaultable security and regime-switching [J]. Mathematical Finance, 2014, 24: 207-249.
[11] Capponi A, Figueroa-Lopez J E, Nisen J. Pricing and semimartingale representations of vulnerable contingent claims in regime-switching markets [J]. Mathematical Finance, 2014, 24: 250-288.
[12] Wu H L, Li Z F. Multi-period mean-variance portfolio selection with regime switching and a stochastic cash flow [J]. Insurance: Mathematics and Economics, 2012, 50: 371-384.
[13] Zhang X, Siu T K. On optimal proportional reinsurance and investment in a Markovian regime-switching economy [J]. Acta Mathematica Sinica, English Series, 2012, 27: 1-16.
[14] Chen P, Yam S C P. Optimal proportional reinsurance and investment with regime-switching for mean-variance insurers [J]. Insurance: Mathematics and Economics, 2013, 53: 871-883.
[15] Liu J Z, Yiu K F C, Siu T K, et al. Optimal investment-reinsurance with dynamic risk constraint and regime switching [J]. Scandinavian Actuarial Journal, 2013,  263-285.
[16] Jin Z, G, Yin G, Wu F K. Optimal reinsurance strategies in regime-switching jump diffusion models: stochastic differential game formulation and numerical methods [J]. Insurance: Mathematics and Economics, 2013, 53: 733-746.
[17] Asmussen S, Hojgaard B, Taksar M. Optimal risk control and dividend distribution policy. Example of excess-of loss reinsurance for an insurance corporation [J].  Finance and Stochastics, 2000, 4: 299-324.
[18] Sotomayor L R, Cadenillas A. Explicit solution of consumption-investment problems in financial markets with regime switching [J].  Mathematical Finance, 2009, 19: 251-279.
[19] Canakoglu E, Ozekici S. Portfolio selection in stochastic markets with exponential utility functions [J]. Annals of Operations Research, 2009, 166: 281-297.
[20] Canakoglu E, Ozekici S. Portfolio selection in stochastic markets with HARA utility function [J]. European Journal of Operational Research, 2010, 201: 520-536.
[21] Canakoglu E, Ozekici S. HARA frontiers of optimal portfolios in stochastic markets [J]. European Journal of Operational Research, 2012, 221: 129-137.
[22] Zeng Y, Wu H L, Lai Y Z. Optimal investment and consumption strategies with state-dependent utility functions and uncertain time-horizon [J]. Economic Modeling, 2013, 33: 462-470.
[23] Elliott R J, Aggoun L, Moore J B. Hidden Markov Models: Estimation and Control [M].  New York: Springer, 1994.
[24] Fleming W H, Soner H M. Controlled Markov Processes and Viscosity Solutions [M].  New York: Springer, 1993.
文章导航

/