运筹学

约束优化问题的一类光滑罚算法的全局收敛特性

展开
  • 1. 曲阜师范大学管理学院,山东曲阜, 273165; 2. 山东理工大学理学院,山东淄博, 255049

收稿日期: 2015-06-06

  网络出版日期: 2015-09-15

Global convergence of a class smooth penalty algorithm of constrained optimization problem

Expand
  • 1. School of Management, Qufu Normal University,  Shandong Qufu 273165, China; 2. School of Science, Shandong University of Technology, Shandong  Zibo 255049, China

Received date: 2015-06-06

  Online published: 2015-09-15

摘要

对约束优化问题给出了一类光滑罚算法.它是基于一类光滑逼近精确罚函数 l_p(p\in(0,1]) 的光滑函数 L_p 而提出的.在非常弱的条件下, 建立了算法的一个摄动定理, 导出了算法的全局收敛性.特别地, 在广义Mangasarian-Fromovitz约束规范假设下, 证明了当 p=1 时, 算法经过有限步迭代后, 所有迭代点都是原问题的可行解;  p\in(0,1) 时,算法经过有限迭代后, 所有迭代点都是原问题可行解集的内点.

本文引用格式

王长钰, 赵文玲 . 约束优化问题的一类光滑罚算法的全局收敛特性[J]. 运筹学学报, 2015 , 19(3) : 151 -160 . DOI: 10.15960/j.cnki.issn.1007-6093.2015.03.018

Abstract

For constrained optimization problem, a class of smooth penalty algorithm is proposed. It is put forward based on  L_p , a smooth function of a class of smooth exact penalty function  {l_p}\left( {p\in (0,1]} \right).  Under the very weak condition, a perturbationtheorem of the algorithm is set up. The global convergence of the algorithm is derived. In particular, under the hypothesis of generalized Mangasarian-Fromovitz constraint qualification, it is proved that when p=1 , after finite iterations, all iterative points of the algorithm are feasible solutions of the original problem. When {p \in (0,1)}, after finite iteration, all the iteration points are the interior points of feasible solution set of the original problem.

参考文献

Auslender A, Penalty and barrier methods: unified framework [R]//  Technical repoat, Laboratoire D'econmetrie de L'ecole Polytechnig Paris, 1997.
Auslender A, Cominetti R, Haddou M, Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming [J]. Math Oper Res, 1997, 22: 43-62.
Ben-Tal A, Teboulle M. A smoothing Technique foe Non-different Optimization Problem in: Lecture Notes in Mathematics [M]. Berlin: Springer, 1989.
Chen C, Mangasarian O L. A Class of smoothing functions for nonlinear and mixed complementary problems [J].  Comput  Optim App, 1996, 5: 97-138.
Chen C, Mangasarian O L. Smoothing method for convex inequality and linear complementarity problems [J].  Math  Program, 1995, 71: 51-69.
Gonzaga C C, Castillo R A. A nonlinear programming algorithm based on non-coercive penalty functions [J].  Math Program (Sec B), 2003, 96: 87-101.
Pinar M, Zenios S. On smoothing exact penalty functions for convex constrained optimization [J].  SIAM J Optim, 1994, 4: 486-511.
Wang C Y, Zhao W L, Zhou J C, et al. Global convergence and finite termination of a class of smooth penalty function algorithms [J].  Optim Meth Soft, 2013, 28: 1-25.
Zang I. Smoothing-out technique for min-max optimization [J].  Math Program, 1980, 19: 61-77.
Rubinov A M, Glover B M, Yang X Q. Decreasing function with Applications to Penalization [J].  SIAM J Optim, 1999, 10: 289-313.
Wang C Y, Ma C, Zhou J C. A new class of exact penalty functions and penalty algorithms [J].  J Glob Optim, 2014, 58: 51-73.
 
文章导航

/