运筹学

向量优化中Free Disposal集的某些对偶性质

展开
  • 1.重庆工商大学数学与统计学院, 重庆 400067;2. 内蒙古大学数学科学学院,呼和浩特 010021; 3.长江师范学院数学与统计学院, 重庆 408100

收稿日期: 2014-10-24

  网络出版日期: 2015-12-15

基金资助

1.国家自然科学基金重点项目(No.11431004);2.国家自然科学基金(No.11271391);

3.国家自然科学基金青年科学基金项目(Nos.11201511,11301571);4.重庆市科委项目(cstc2014pt-sy00001)

Some dual characterizations of free disposal sets in vector optimization

Expand
  • 1.College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China; 2.College of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China; 3.School of Mathematics and Statistics, Yangtze Normal University, Chongqing 408100, China

Received date: 2014-10-24

  Online published: 2015-12-15

摘要

在分离局部凸空间中考虑free disposal集的对偶性质, 其中free disposal集是 指与凸锥的代数和仍是其本身的集合.在E_1或E_2是free disposal集的条件下,证明了(E_1\cap E_2)^+=E_1^++ E_2^+和E_1^+ \cap E_2^+=(E_1+E_2)^+等对偶结果.

本文引用格式

唐莉萍, 杨玉红 . 向量优化中Free Disposal集的某些对偶性质[J]. 运筹学学报, 2015 , 19(4) : 107 -113 . DOI: 10.15960/j.cnki.issn.1007-6093.2015.04.010

Abstract

In this paper, we focus on some dual characterizations of free disposal sets in a separated locally convex space, in which, free disposal set means that its algebraic sum with a convex cone is still itself. Under the assumption that E_1 or E_2 is free disposal set, we proved some dual results, such as (E_1\cap E_2)^+=E_1^++ E_2^+, E_1^+ \capE_2^+=(E_1+ E_2)^+, etc.

参考文献

Chicoo M, Mignanego F, Pusillo L, Tijs S. Vector optimization problem via improvement sets [J]. Journal of Optimization Theory and Applications, 2011, 150(3): 516-529.


Guti\'{e}rrez C, Jim\'{e}nez B, Novo V. Improvement sets and vector optimization [J]. European Journal of Operational Research,2012, 223(2): 304-311.

Guti\'{e}rrez C, Jim\'{e}nez B, Novo V. Optimality conditions for quasi-solutions of vector optimization problems [J]. Journal of Optimization Theory and Applications, 2013: DOI 10.1007/s10957-013-0393-6.

Oppezzi P, Rossi A. Improvement sets and convergence of optimal points [J]. Journal of Optimization Theory and Applications, 2014: DOI 10.1007/s10957-014-0669-5.

Zhao K Q, Yang X M. A unified stability result with perturbations in vector optimization [J]. Optimization Letters, 2013,7(8): 1913-1919.

Lalitha C S, Chatterjee P. Stability and scalarization in vector optimization using improvement sets [J]. Journal of Optimization Theory and Applications, 2015,  166(3): 825-843.

Zhao K Q, Yang X M. E-Benson proper efficiency in vector optimization [J]. Optimization, 2015, 64(4):739-752.

Zhao K Q, Yang X M. E-Proper saddle points and E-proper duality in vector optimization with set-valued maps [J]. Taiwanese Journal of Mathematics, 2014,18(2): 483-495.

Jahn J. Vector Optimization [M]. New York: Springer-Verlag, 2011.

Ansari Q H, Yao J C. Recent Developments in Vector Optimization [M]. Berlin: Springer, 2012.

Luc D T. Theory of Vector Optimization [M]. Berlin: Springer, 1989.

Sawaragi Y, Nakayama H, Tanino T. Theory of Multiobjective Optimization [M]. Orlando: Academic Press, 1985.

Eichfelder G. Variable Ordering Structures in Vector Optimization [M]. Berlin: Springer, 2014.
 
夏远梅, 张万里, 赵克全. 向量优化中改进集的对偶性质 [J]. 重庆师范大学学报(自然科学版), 2014, 3 (5): 26-30.

Z\u{a}linescu C. Convex Analysis in General Vector Spaces [M]. Singapore: World Scientific, 2002.

史树中. 凸分析 [M]. 上海:上海科学技术出版社, 1990.

 
文章导航

/