运筹学学报 >
2025 , Vol. 29 >Issue 2: 194 - 200
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2025.02.015
可消去超图p-谱半径的极值问题
收稿日期: 2022-01-06
网络出版日期: 2025-06-12
基金资助
国家自然科学基金(11871329);国家自然科学基金(11971298)
版权
The extremal p-spectral radius of cancellative hypergraphs
Received date: 2022-01-06
Online published: 2025-06-12
Copyright
设A和B是两个集合, A和B的对称差是由
吴志伟, 康丽英 . 可消去超图p-谱半径的极值问题[J]. 运筹学学报, 2025 , 29(2) : 194 -200 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.02.015
Let A and B be two sets, the symmetry difference of A and B is a set consisting of all elements not belonging to
| 1 | Keevash P , Lenz J , Mubayi D . Spectral extremal problems for hypergraphs[J]. SIAM Journal on Discrete Mathematics, 2014, 28 (4): 1838- 1854. |
| 2 | Nikiforov V S . Analytic methods for uniform hypergraphs[J]. Linear Algebra & Its Applications, 2014, 457, 455- 535. |
| 3 | Lu L Y. The maximum p-spectral radius of hypergraphs with m edges[EB/OL]. [2022-01-05]. arXiv: 1803.08653. |
| 4 | Talbot J . Lagrangians of hypergraphs[J]. Combinatorics Probability & Computing, 2002, 11, 199- 216. |
| 5 | Gruslys V , Letzter S , Morrison N . Hypergraph Lagrangians I: The Frankl-Füredi conjecture is false[J]. Advances in Mathematics, 2020, 365, 107063. |
| 6 | Cooper J N , Dutle A M . Spectra of uniform hypergraphs[J]. Linear Algebra & Its Applications, 2012, 436 (9): 3268- 3292. |
| 7 | Chang J Y , Ding W Y , Qi L Q . Computing the p-spectral radii of uniform hypergraphs with applications[J]. Journal of Scientific Computing, 2018, 75 (1): 1- 25. |
| 8 | Kang L Y , Nikiforov V S , Yuan X Y . The p-spectral radius of k-partite and k-chromatic uniform hypergraphs[J]. Linear Algebra & Its Applications, 2015, 478, 81- 107. |
| 9 | Kang L Y , Liu L L , Shan E F . The eigenvectors to the p-spectral radius of general hypergraphs[J]. Journal of Combinatorial Optimization, 2019, 38 (2): 556- 569. |
| 10 | Kang L Y , Liu L L , Lu L Y , et al. The extremal p-spectral radius of Berge-hypergraphs[J]. Linear Algebra & Its Applications, 2021, 610, 608- 624. |
| 11 | Zhou Y C , Kang L Y , Liu L L , et al. Extremal problems for the p-spectral radius of Berge-hypergraphs[J]. Linear Algebra & Its Applications, 2020, 600, 22- 39. |
| 12 | Bollobás B . Three-graphs without two triples whose symmetric difference is contained in a third[J]. Discrete Mathematics, 1974, 8 (1): 21- 24. |
| 13 | Keevash P , Mubayi D . Stability theorems for cancellative hypergraphs[J]. Journal of Combinatorial Theory, Series B, 2004, 92 (1): 163- 175. |
| 14 | Turán P . On the theory of graphs[J]. Colloquium Mathematicum, 1954, 3, 19- 30. |
/
| 〈 |
|
〉 |