论文

最大度是3的二部平图的正常多色4-染色

展开
  • 1. 山东师范大学数学与统计学院, 山东济南 250358
于明晖, E-mail: yuminghui2001@163.com

收稿日期: 2022-01-27

  网络出版日期: 2025-06-12

基金资助

国家自然科学基金(12071265);山东省自然科学基金(ZR2019MA032)

版权

运筹学学报编辑部, 2025, 版权所有,未经授权,不得转载。

Proper polychromatic 4-coloring of subcubic bipartite plane graphs

Expand
  • 1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China

Received date: 2022-01-27

  Online published: 2025-06-12

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

G的一个正常k-染色是G的一个k色点染色, 使得任两个相邻的顶点都异色。平图G的一个多色k-染色是G的一个k色点染色, 使得每个面出现k种不同的颜色。面f的度数是f上顶点的个数, 用$g(f)$来表示, 令$g(G)=\min\left\{g(f)|f\in F(G)\right\}$, 其中$F(G)$是平图G所有面的集合。显然, 若平图G存在多色k-染色, 则$k\leq g(G)$。Horev等人(2012)证明了3-正则二部简单平图是正常多色4-可染的。在本文中, 我们推广了上述结果, 证明了对于最大度是3的连通二部简单平图G, 若$g(G)\geq 5$, 则G是正常多色4-可染的。条件$g(G)\geq 5$是紧的, 因为存在$g(G)=4$最大度是3的连通二部简单平图G不能正常多色4-染色。

本文引用格式

于明晖 . 最大度是3的二部平图的正常多色4-染色[J]. 运筹学学报, 2025 , 29(2) : 95 -102 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.02.007

Abstract

A proper k-coloring of a graph G is a vertex k-coloring such that adjacent vertices have different colors. A polychromatic k-coloring of a plane graph G is a vertex k-coloring such that every face meets all k colors. The degree of a face f of G is the number of vertices incident with f and is denoted by $g(f)$. Let $g(G)=\min\{g(f)|f\in F(G)\}$, where $F(G)$ is the face set of plane graph G. Obviously, if a plane graph G has a polychromatic k-coloring, then $k\leq g(G)$. In 2012, Horev et al. showed that every simple cubic bipartite plane graph is proper polychromatic 4-colorable (2012). In this paper, we extend the above result, and show that every subcubic bipartite plane graph G with $g(G)\geq 5$ has a proper polychromatic 4-coloring. The condition that $g(G)\geq 5$ is tight, because there exists (non-cubic) subcubic bipartite plane graph G which has $g(G)=4$ but has no proper polychromatic 4-coloring.

参考文献

1 Chvátal V . A combinatorial theorem in plane geometry[J]. Journal of Combinatorial Theory Series B, 1975, 18 (1): 39- 41.
2 Fisk S . A short proof of Chvátal's watchman theorem[J]. Journal of Combinatorial Theory, Series B, 1978, 24 (3): 374.
3 Csizmadia G , Tóth G . Note on an art gallery problem[J]. Computational Geometry Theory and Applications, 1998, 10 (1): 47- 55.
4 Bose P , Shermer T , Toussaint G , et al. Guarding polyhedral terrains[J]. Computational Geometry Theory and Applications, 1997, 7 (3): 173- 185.
5 Mohar B , ?krekovski R . The Gr?tzsch theorem for the hypergraph of maximal cliques[J]. The Electronic Journal of Combinatorics, 1999, 6, R26.
6 Bose P , Kirkpatrick D , Li Z . Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces[J]. Computational Geometry Theory and Applications, 2003, 26 (3): 209- 219.
7 Alon N , Berke R , Buchin K , et al. Polychromatic colorings of plane graphs[J]. Discrete Computational Geometry, 2009, 42, 421- 442.
8 Dimitrov D , Horev E , Krakovski R . Polychromatic colorings of rectangular partitions[J]. Discrete Mathematics, 2009, 309 (9): 2957- 2960.
9 Gerbner D , Keszegh B , Lemons N , et al. Polychromatic colorings of arbitrary rectangular partitions[J]. Discrete Mathematics, 2010, 310 (1): 21- 30.
10 Horev E , Krakovski R . Polychromatic colorings of bounded degree plane graphs[J]. Journal of Graph Theory, 2009, 60 (4): 269- 283.
11 Horev E , Katz M , Krakovski R , et al. Polychromatic 4-coloring of cubic bipartite plane graphs[J]. Discrete Mathematics, 2012, 312 (4): 715- 719.
12 Kobayashi M , Nakamoto A , Yamaguchi T . Polychromatic 4-coloring of cubic even embeddings on the projective plane[J]. Discrete Mathematics, 2013, 313 (21): 2423- 2431.
13 Asayama Y , Matsumoto N . Balanced polychromatic 2-coloring of triangulations[J]. Graphs and Combinatorics, 2022, 38 (1): 16.
文章导航

/