运筹学学报 >
2025 , Vol. 29 >Issue 2: 95 - 102
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2025.02.007
最大度是3的二部平图的正常多色4-染色
收稿日期: 2022-01-27
网络出版日期: 2025-06-12
基金资助
国家自然科学基金(12071265);山东省自然科学基金(ZR2019MA032)
版权
Proper polychromatic 4-coloring of subcubic bipartite plane graphs
Received date: 2022-01-27
Online published: 2025-06-12
Copyright
图G的一个正常k-染色是G的一个k色点染色, 使得任两个相邻的顶点都异色。平图G的一个多色k-染色是G的一个k色点染色, 使得每个面出现k种不同的颜色。面f的度数是f上顶点的个数, 用
于明晖 . 最大度是3的二部平图的正常多色4-染色[J]. 运筹学学报, 2025 , 29(2) : 95 -102 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.02.007
A proper k-coloring of a graph G is a vertex k-coloring such that adjacent vertices have different colors. A polychromatic k-coloring of a plane graph G is a vertex k-coloring such that every face meets all k colors. The degree of a face f of G is the number of vertices incident with f and is denoted by
Key words: bipartite graph; plane graph; proper polychromatic coloring
| 1 | Chvátal V . A combinatorial theorem in plane geometry[J]. Journal of Combinatorial Theory Series B, 1975, 18 (1): 39- 41. |
| 2 | Fisk S . A short proof of Chvátal's watchman theorem[J]. Journal of Combinatorial Theory, Series B, 1978, 24 (3): 374. |
| 3 | Csizmadia G , Tóth G . Note on an art gallery problem[J]. Computational Geometry Theory and Applications, 1998, 10 (1): 47- 55. |
| 4 | Bose P , Shermer T , Toussaint G , et al. Guarding polyhedral terrains[J]. Computational Geometry Theory and Applications, 1997, 7 (3): 173- 185. |
| 5 | Mohar B , ?krekovski R . The Gr?tzsch theorem for the hypergraph of maximal cliques[J]. The Electronic Journal of Combinatorics, 1999, 6, R26. |
| 6 | Bose P , Kirkpatrick D , Li Z . Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces[J]. Computational Geometry Theory and Applications, 2003, 26 (3): 209- 219. |
| 7 | Alon N , Berke R , Buchin K , et al. Polychromatic colorings of plane graphs[J]. Discrete Computational Geometry, 2009, 42, 421- 442. |
| 8 | Dimitrov D , Horev E , Krakovski R . Polychromatic colorings of rectangular partitions[J]. Discrete Mathematics, 2009, 309 (9): 2957- 2960. |
| 9 | Gerbner D , Keszegh B , Lemons N , et al. Polychromatic colorings of arbitrary rectangular partitions[J]. Discrete Mathematics, 2010, 310 (1): 21- 30. |
| 10 | Horev E , Krakovski R . Polychromatic colorings of bounded degree plane graphs[J]. Journal of Graph Theory, 2009, 60 (4): 269- 283. |
| 11 | Horev E , Katz M , Krakovski R , et al. Polychromatic 4-coloring of cubic bipartite plane graphs[J]. Discrete Mathematics, 2012, 312 (4): 715- 719. |
| 12 | Kobayashi M , Nakamoto A , Yamaguchi T . Polychromatic 4-coloring of cubic even embeddings on the projective plane[J]. Discrete Mathematics, 2013, 313 (21): 2423- 2431. |
| 13 | Asayama Y , Matsumoto N . Balanced polychromatic 2-coloring of triangulations[J]. Graphs and Combinatorics, 2022, 38 (1): 16. |
/
| 〈 |
|
〉 |