一种求解低秩矩阵补全的惯性加速交替方向法

展开
  • 1. 太原师范学院数学与统计学院, 山西晋中 030619
闫喜红, E-mail: xihong1@e.ntu.edu.sg

收稿日期: 2022-09-28

  网络出版日期: 2025-03-08

基金资助

国家自然科学基金(11901424);山西省回国留学人员科研教研项目(2022-170);山西省研究生教育创新项目(2022Y758);山西省科技创新人才团队专项基金

版权

运筹学学报编辑部, 2025, 版权所有,未经授权,不得转载。

An inertial alternating direction method of multiplier for low rank matrix completion

Expand
  • 1. School of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China

Received date: 2022-09-28

  Online published: 2025-03-08

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

交替方向法作为求解矩阵补全问题的经典方法之一, 具有能够将一个极小化问题分解成多个规模更小、更容易求解的子问题的优势, 近年来在图像处理和数据分析等领域备受青睐。本文采用交替方向法的框架, 结合惯性策略, 提出了一种求解矩阵补全问题的惯性加速交替方向法。新算法在每步迭代中, 对于其中一部分变量利用交替方向法的前两次迭代点外推得到新一步的迭代点, 从而提高计算效率。本文在合理的假设条件下, 证明了新算法的收敛性。最后, 通过随机矩阵补全的数值实验及图像修复的实例验证了新算法的有效性和可行性。

本文引用格式

闫喜红, 唐晓妮 . 一种求解低秩矩阵补全的惯性加速交替方向法[J]. 运筹学学报, 2025 , 29(1) : 172 -184 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.01.014

Abstract

The alternating direction method of multiplier is attractive for solving matrix completion problems, which has the advantage of being able to decompose a minimization problem into many smaller and easier subproblems. Therefore, it is popular in the field of image processing and data analysis in recent years. Based on the framework of the alternating direction method of multiplier, we combine the inertial strategy and propose an inertial accelerated alternating direction method of multiplier to solve the matrix completion problems in this paper. In each iteration of the new method, for some of variables, the iterative points of the previous two iterations of the alternating direction method of multiplier are extrapolated to obtain the new iteration points, which improve the computational efficiency of the new method. Under the reasonable assumptions, we prove convergence of the new method. Finally, we also verify the effectiveness and feasibility of the new method by numerical experiments of random matrix completion and an example of image restoration.

参考文献

1 Candès E J , Plan Y . Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98 (6): 925- 936.
2 Spyromitros-xioufis E , Tsoumakas G , Groves W , et al. Multi-target regression via input space expansion: Treating targets as inputs[J]. Machine Learning, 2016, 104 (1): 55- 98.
3 Hayashi N , Watanabe S . Upper bound of bayesian generalization error in non-negative matrix factorization[J]. Neurocomputing, 2017, 266 (29): 21- 28.
4 Xue H Y , Zhang S M , Cai D . Depth image inpainting: Improving low rank matrix completion with low gradient regularization[J]. IEEE Transactions on Image Processing, 2017, 26 (9): 4311- 4320.
5 Candès E J , Recht B . Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9 (6): 717- 772.
6 Cai J F , Candès E J , Shen Z W . A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20 (4): 1956- 1982.
7 Lin Z C, Chen M M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [R]. Champaign: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 2009.
8 Chen C H , He B S , Yuan X M . Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2011, 32 (1): 227- 245.
9 He B S , Xu M H , Yuan X M . Solving large-scale least squares semidefinite programming by alternating direction methods[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 32 (1): 136- 152.
10 Ng M K , Weiss P , Yuan X M . Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[J]. SIAM Journal on Scientific Computing, 2009, 32 (5): 2710- 2736.
11 闫喜红, 王川龙, 李超, 等. 求解低秩矩阵恢复问题的非单调交替梯度方向法[J]. 中国科学: 数学, 2021, 51 (4): 549- 560.
12 Yang J F , Zhang Y . Alternating direction algorithms for 11-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2009, 33 (1): 250- 278.
13 Ochs P , Chen Y J , Brox T , et al. iPiano: Inertial proximal algorithm for nonconvex optimization[J]. SIAM Journal on Imaging Sciences, 2014, 7 (2): 1388- 1419.
14 Polyak B T . Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 5 (4): 1- 17.
15 Lorenz D A , Pock T . An inertial forward-backward algorithm for monotone inclusions[J]. Journal of Mathematical Imaging and Vision, 2015, 51 (2): 311- 325.
16 Ochs P , Brox T , Pock T . iPiasco: Inertial proximal algorithm for strongly convex optimization[J]. Journal of Mathematical Imaging and Vision, 2015, 53 (2): 171- 181.
17 Bot R I , Csetnek E R , Hendrich C . Inertial douglas-rachford splitting for monotone inclusion problems[J]. Applied Mathematics and Computation, 2015, 256, 472- 487.
18 Bot R I, Csetnek E R. An inertial alternating direction method of multipliers [EB/OL]. (2014-04-17)[2022-08-28]. arXiv: 1404.4582.
19 Chen C H , Ma S Q , Yang J F . A general inertial proximal point algorithm for mixed variational inequality problem[J]. SIAM Journal on Optimization, 2015, 25 (4): 2120- 2142.
20 Chen C H , Chan R H , Ma S Q , et al. Inertial proximal ADMM for linearly constrained separable convex optimization[J]. SIAM Journal on Imaging Sciences, 2015, 8 (4): 2239- 2267.
21 Golub G H , Van Loan C F . Matrix Computations[M]. Baltimore: Johns Hopkins University Press, 1996.
22 He B S , Ma F , Xu S J , et al. A generalized primal-dual algorithm with improved convergence condition for saddle point problems[J]. SIAM Journal on Imaging Sciences, 2022, 15 (3): 1157- 1183.
23 Beck A . First-Order Methods in Optimization[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2017.
文章导航

/