多凸规划罚函数的部分精确性研究

展开
  • 1. 浙江工业大学管理学院, 浙江杭州 310023
孟志青, E-mail: mengzhiqing@zjut.edu.cn

收稿日期: 2021-07-09

  网络出版日期: 2024-12-20

基金资助

国家自然科学基金面上项目(11871434);浙江省自然科学基金(LY18A010031)

版权

运筹学学报编辑部, 2024, 版权所有,未经授权。

Partial exactness of penalty function of multi-convex programming

Expand
  • 1. School of Management, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China

Received date: 2021-07-09

  Online published: 2024-12-20

Copyright

, 2024, All rights reserved, without authorization

摘要

多凸规划是解决机器学习、信号与信息处理等领域中许多工程优化问题的重要模型。本文定义了多凸规划罚函数的部分最优解、部分KKT条件、部分KKT点、部分Slater约束条件、部分精确性和部分稳定性等新概念。在部分Slater约束条件下, 证明了多凸规划的部分最优解等价于部分KKT条件, 并证明了多凸规划的部分精确性等价于部分KKT条件和多凸规划的部分精确性等价于部分稳定性等结果。这些结果对于研究多凸规划的精确罚函数具有重要意义。

本文引用格式

来翊晨, 孟志青 . 多凸规划罚函数的部分精确性研究[J]. 运筹学学报, 2024 , 28(4) : 57 -65 . DOI: 10.15960/j.cnki.issn.1007-6093.2024.04.005

Abstract

Multi-convex programming(MCP) is an important model in solving many engineering optimization problems in areas like machine learning and signal and information processing. In this paper, some new concepts of partial optimum, partial KKT condition, partial KKT ponit, partial Slater constraint qualification, partial exactness and partial stableness for the penalty function of multi-convex programming are defined. Under the partial Slater constraint qualification, a partial optimum of MCP is proved to be equivalent to partial KKT condition of MCP. The partial exactness of MCP is proved to be equivalent to partial KKT condition of MCP. The partial exactness of MCP is proved to be equivalent to partial stableness of MCP. These results are important for studying the exact penalty function of multi convex programming.

参考文献

1 Shen X, Diamond S, Udell M, et al. Disciplined multi-convex programming [C]//Chinese Control and Decision Conference, 2017: 895-900.
2 Grant M, Boyd S, Ye Y. Disciplined convex programming [M]//Global Optimization: From Theory to Implementation, Nonconvex Optimization and Its Applications, New York: Springer, 2006: 155-210.
3 Chiu W Y . Method of reduction of variables for bilinear matrix inequality problems in system and control designs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47 (7): 1241- 1256.
4 Ichihara H, Nobuyama E. Difference of multiconvex relaxation of parameterized LMIs: Control applications [C]//SICE 2003 Annual Conference, IEEE Xplore, 2003.
5 Hours J, Jones C. A parametric multiconvex splitting technique with application to real-time NMPC [C]//53rd IEEE Conference on Decision and Control, 2014: 5052-5057.
6 Suh S , Shin S , Lee J , et al. Localized user-driven topic discovery via boosted ensemble of nonnegative matrix factorization[J]. Knowledge and Information Systems, 2018, 56, 503- 531.
7 Udell M , Horn C , Zadeh R , et al. Generalized low rank models[J]. Foundations and Trends in Machine Learning, 2016, 9 (1): 1- 118.
8 Fu X , Huang K , Sidiropoulos N D . On identifiability of nonnegative matrix factorization[J]. IEEE Signal Processing Letters, 2018, 25 (3): 328- 332.
9 Hong M , Luo Z Q . On the linear convergence of the alternating direction method of multipliers[J]. Mathematical Programming, 2017, 162, 165- 199.
10 Serbetli S , Yener A . Transceiver optimization for multiuser MIMO systems[J]. IEEE Transactions on Signal Processing, 2004, 52 (1): 214- 226.
11 Al-Shatri H , Li X , Ganesa R S S . Maximizing the sum rate in cellular networks using multiconvex optimization[J]. IEEE Transactions on Wireless Communications, 2016, 15 (5): 3199- 3211.
12 Wen Z , Yin W , Zhang Y . Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Mathematical Programming Computation, 2012, 4 (4): 333- 361.
13 Xu Y , Yin W . A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J]. SIAM Journal on Imaging Sciences, 2013, 6 (3): 1758- 1789.
14 Gorski J , Pfeuffer F , Klamroth K . Biconvex sets and optimization with biconvex functions: A survey and extensions[J]. Mathematical Methods of Operations Research, 2007, 66, 373- 407.
15 Li G , Wen C , Zheng W X , et al. Iterative identification of block-oriented nonlinear systems based on biconvex optimization[J]. Systems & Control Letters, 2015, 79, 68- 75.
16 Shah S, Yadav A K, Castillo C D, et al. Biconvex relaxation for semidefinite programming in computer vision [C]//European Conference on Computer Vision: Computer Vision, 2016: 717-735.
17 Al-Khayyaltt F A , Falk J E . Jointly constrained biconvex programming[J]. Mathematics of Operations Research, 1983, 8 (2): 273- 286.
18 Liang X , Bai J . Preconditioned ADMM for a class of bilinear programming problems[J]. Mathematical Problems in Engineering, 2018, 2018, 1- 9.
19 Hajinezhad D , Shi Q J . Alternating direction method of multipliers for a class of nonconvex bilinear optimization: Convergence analysis and applications[J]. Journal of Global Optimization, 2018, 70, 261- 88.
20 Charkhgard H , Savelsbergh M , Talebian M . A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints[J]. Computers & Operations Research, 2018, 89, 17- 30.
21 Pardalos P M , Resende M G C . Handbook of Applied Optimization[M]. Oxford: Oxford University Press, 2002.
22 Zangwill W I . Nonlinear programming via penalty function[J]. Manangement Science, 1967, 13, 334- 358.
23 Rosenberg E . Globally convergent algorithms for convex programming[J]. Mathematics of Operations Rresearch, 1981, 6, 437- 443.
24 Di Pillo G , Grippo L . An exact penalty function method with global conergence properties for nonlinear programming problems[J]. Mathemathical Programming, 1981, 36, 1- 18.
25 Clarke F H . Optimization and Nonsmooth Analysis[M]. New York: Wiley, 1983.
26 Burke J V . Calmness and exact penalization[J]. SIAM Journal on Control and Optimization, 1991, 29, 493- 497.
文章导航

/