工件权重带限制的最小化最大加权完工时间的单机在线排序问题

展开
  • 1. 青岛理工大学管理工程学院, 山东青岛 266525
    2. 曲阜师范大学管理学院、运筹学研究院, 山东日照 276826
马冉  E-mail: sungirlmr@126.com

收稿日期: 2021-06-23

  网络出版日期: 2024-06-07

基金资助

国家自然科学基金(11501171);国家自然科学基金(11771251);山东省自然科学基金(ZR2020MA028)

版权

运筹学学报编辑部, 2024, 版权所有,未经授权。

Single-machine online scheduling to minimize maximum weighted completion time with limited weights

Expand
  • 1. School of Management Engineering, Qingdao University of Technology, Qingdao 266525, Shandong, China
    2. Institute of Operations Research, School of Management, Qufu Normal University, Rizhao 276826, Shandong, China

Received date: 2021-06-23

  Online published: 2024-06-07

Copyright

, 2024, All rights reserved, without authorization

摘要

本文考虑了最小化最大加权完工时间的单机在线排序问题, 要求工件的权重在工件加工时间一定范围之内且工件的权重和工件加工时间具有一致性, 即$ ap_j\leq w_j\leq bp_j (a\geq\frac{\sqrt{5}-1}{2}b, b\geq a)$且若$ w_i>w_j$$ p_i\geq p_j$, 如果$ w_i=w_j$$ p_i=p_j$。工件以时间在线的方式到达, 只有工件$ J_j$在达到释放时间$ r_j$后, 决策者才知晓工件的基本信息, 如加工时间$ p_j$和权重$ w_j$。对于此问题, 首先利用对手法证明了其下界为$ 1+\frac{b}{b+a}$, 随后给出了竞争比为$ 1+\frac{b}{b+a}$的最好可能的在线算法。特别地, 当$ a=\frac{\sqrt{5}-1}{2}b$时, 该算法的竞争比为$ \frac{\sqrt{5}+1}{2}$

本文引用格式

徐娟年, 马冉, 韩雯雯, 张玉忠 . 工件权重带限制的最小化最大加权完工时间的单机在线排序问题[J]. 运筹学学报, 2024 , 28(2) : 71 -80 . DOI: 10.15960/j.cnki.issn.1007-6093.2024.02.005

Abstract

The setting we consider is nonpreemptive single machine online scheduling, with the objective to minimize the maximum weighted completion time of jobs. The weight of the job is not only limited strictly within the processing time compass of this job, but also agreeable with processing time of this job, i.e., $ ap_j\leq w_j\leq bp_j(a\geq\frac{\sqrt{5}-1}{2}b, b\geq a)$ and if $ w_i>w_j$, then $ p_i\geq p_j$. Especially, if $ w_i=w_j$, then $ p_i=p_j$. Significantly, there are irrelevant jobs arriving online over time and the knowledge of each job $ J_j$, such as its processing length $ p_j$ and weight $ w_j$, is not revealed for the scheduler until it is released at time $ r_j$. By means of adversary method, it is explicitly derived that the lower bound of the considered problem is $ 1+\frac{b}{b+a}$. Then we provide a best possible online algorithm with the competitive ratio of $ 1+\frac{b}{b+a}$. Moreover, the competitive ratio of this algorithm is $ \frac{\sqrt5+1}{2}$, when $ a=\frac{\sqrt{5}-1}{2}b$.

参考文献

1 Vestjens A P A. On-line machine scheduling[D]. Netherlands: Eindhove University of Technology, 1997.
2 Pruhs K, Sgall J, Tong E. Online scheduling[M]//Handbook of Scheduling: Algorithms, Model, and Pertormance Analysis, Boca Raton: Chapman and Hall/CRC Press, 2004: 1-41.
3 Tan Z Y, Zhang A. Online and semi-online scheduling[M]//Handbook of Combinatorial Optimization, New York: Springer, 2013.
4 Tian J , Fu R Y , Yuan J J . Online over time scheduling on parallel-batch machines: A survey[J]. Journal of the Operations Research Society of China, 2014, 2, 445- 454.
5 Tang L X , Li F , Zhen Z L . Integrated scheduling of production and two-stage delivery of make-to-order products: Offline and online algorithms[J]. Informs Journal on Computing, 2019, 31 (3): 493- 514.
6 冯琪, 原晋江. 一个具有两类工件的多目标排序的NP-困难性[J]. 运筹学学报, 2007, 11 (4): 121- 126.
7 Oron D , Shabtay D , Steiner G . Single machine scheduling with two competing agents and equal job processing times[J]. European Journal of Operational Research, 2015, 244, 86- 99.
8 Chen R B , Yuan J J . Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices[J]. 4OR, 2020, 18 (2): 177- 196.
9 Yuan J J , Ng C T , Cheng T C E . Scheduling with release dates and preemption to minimize multiple max-form objective functions[J]. European Journal of Operational Research, 2020, 280 (3): 860- 875.
10 Zhao Q L , Yuan J J . Bicriteria scheduling of equal length jobs on uniform parallel machines[J]. Journal of Combinatorial Optimization, 2020, 39, 637- 661.
11 Li W J . A best possible online algorithm for the parallel-machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2015, 32, 1550030.
12 Chai X , Lu L F , Li W H , et al. Best-possible online algorithms for single machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2018, 35 (6): 1850048.
13 Li W H , Chai X . Online scheduling on bounded batch machines to minimize the maximum weighted completion time[J]. Journal of the Operations Research Society of China, 2018, 6 (3): 455- 465.
14 Li W J , Yuan J J . Single-machine online scheduling of jobs with non-delayed processing constraint[J]. Journal of Combinatorial Optimization, 2021, 41, 830- 843.
文章导航

/