k圈图的最大Laplace分离度

展开
  • 1. 安庆师范大学数理学院, 安徽安庆 246133
    2. 合肥幼儿师范高等专科学校公共教学部, 安徽合肥 230013
余桂东  E-mail: guidongy@163.com

收稿日期: 2019-01-15

  网络出版日期: 2022-05-27

基金资助

国家自然科学基金(11871077);安徽省自然科学基金(1808085MA04);安徽省高校自然科学基金(KJ2020A0894);合肥幼专图论科研创新团队(KCTD202001)

The maximum Laplacian separator of $ k $-cyclic graph

Expand
  • 1. School of Mathematics and Physics, Anqing Normal University, Anqing 246133, Anhui, China
    2. Department of Public Teaching, Hefei Preschool Education College, Hefei 230013, Anhui, China

Received date: 2019-01-15

  Online published: 2022-05-27

摘要

$ G $是一个$ n $$ k $圈图, $ k $圈图为边数等于顶点数加$ k-1 $的简单连通图。$ \mu_{1}(G) $$ \mu_{2}(G) $分别记为图$ G $的Laplace矩阵的最大特征值和次大特征值, 图$ G $的Laplace分离度定义为$ S_{L}(G)=\mu_{1}(G)-\mu_{2}(G) $。本文研究了给定阶数的$ k $圈图的最大Laplace分离度, 并刻画了相应的极图, 其结果推广了已有当$ k=1, 2, 3 $时的结论。

本文引用格式

余桂东, 阮征, 舒阿秀 . k圈图的最大Laplace分离度[J]. 运筹学学报, 2022 , 26(2) : 137 -142 . DOI: 10.15960/j.cnki.issn.1007-6093.2022.02.012

Abstract

Let $ G $ be an $ n $-order $ k $-cyclic graph. The $ k $-cyclic graph is a simply connected graph which the number of edges is equal to the number of vertices adding $ k-1 $. Let $ \mu_{1}(G) $ and $ \mu_{2}(G) $ be the largest eigenvalue and the second largest eigenvalue of the Laplacian matrix of $ G $, respectively. The Laplacian separator of graph $ G $ is defined as $ S_{L}(G)=\mu_{1}(G)-\mu_{2}(G) $. In this paper, we study the maximun Laplacian separator of $ k $-cyclic graph with given order, and characterize the according extremal graph. The result generalizes the existing conclusions when $ k=1, 2, 3 $.

参考文献

1 Li J X , Shiu W C , Chan W H . Some results on the Laplacian spectrum of unicyclic graphs[J]. Linear Algebra and its Applications, 2009, 430, 2080- 2093.
2 You Z F , Liu B L . The signless Laplacian separator of graphs[J]. Electronic Journal of Linear Algebra, 2011, 22, 151- 160.
3 Li J X , Guo J M , Shiu W C . On the second largest Laplacian eigenvalues of graphs[J]. Linear Algebra and its Applications, 2013, 438, 2438- 2446.
4 Yu G D , Huang D M , Zhang W X , et al. The maximum Laplacian separators of bicyclic and tricyclic graphs[J]. 中国科学技术大学学报, 2017, 9, 733- 737.
5 Cvetkovic D M , Doob M , Sacks H . Spectra of Graphs-Theory and Applications[M]. New York: Academic Press, 1980: 191- 195.
6 Merris R . A note on Laplacian graph eigenvalues[J]. Linear Algebra and its Applications, 1998, 285, 33- 35.
7 Yuan X Y . A note on the Laplacian spectral radii of bicyclic graphs[J]. Advances in Mathematics (China), 2010, 39 (6): 703- 708.
8 何春阳, 郭曙光. 不含三圈的k圈图的拟拉普拉斯和拉普拉斯谱半径[J]. 高校应用数学学报, 2014, 29 (3): 295- 302.
9 Bapat R B . Graphs and Matrices[M]. New York: Springer, 2010.
文章导航

/