工件的释放时间和加工时间具有一致性的单机在线排序问题研究

展开
  • 1. 洛阳师范学院数学科学学院, 河南洛阳 471934
    2. 河南工程学院理学院, 河南郑州 451191
李文杰  E-mail: liwenjie0521@163.com

收稿日期: 2021-02-26

  网络出版日期: 2022-05-27

基金资助

河南省自然科学基金(222300420503);河南省高校重点基础研究基金(22A110015);河南省高校重点基础研究基金(20ZX004);河南省高校重点基础研究基金(22ZX009);河南省高校青年骨干教师培养计划基金(2019GGJS202);河南省高校青年骨干教师培养计划基金(2018XJGGJS-10)

Research on the single-machine online schedule in which the jobs' release times and processing times are agreeable

Expand
  • 1. School of Mathematical Sciences, Luoyang Normal University, Luoyang 471934, Henan, China
    2. College of Science, Henan University of Engineering, Zhengzhou 451191, Henan, China

Received date: 2021-02-26

  Online published: 2022-05-27

摘要

工件的释放时间和加工时间具有一致性, 是指释放时间大的工件其加工时间不小于释放时间小的工件的加工时间, 即若$r_{i}\geq r_{j}$, 则$p_{i}\geq p_{j}$。本文在该一致性约束下, 研究最小化最大加权完工时间单机在线排序问题, 和最小化总加权完工时间单机在线排序问题, 并分别设计出$\frac{\sqrt{5}+1}{2}$-竞争的最好可能在线算法。

本文引用格式

李文杰, 李钰晶, 刘海玲 . 工件的释放时间和加工时间具有一致性的单机在线排序问题研究[J]. 运筹学学报, 2022 , 26(2) : 55 -63 . DOI: 10.15960/j.cnki.issn.1007-6093.2022.02.005

Abstract

There are $n$ jobs $J_1, J_2, \cdots, J_n$ to be scheduled on the single machine. Each job $J_{j}$ has a nonnegative arriving time $r_{j}$, a positive processing time $p_{j}$, and a nonnegative weight $w_{j}$. We consider one restricted model: the jobs have agreeable release times and processing times (i.e., if $r_{i}\geq r_{j}$, then $p_{i}\geq p_{j}$). Under this restricted model, we study the single-machine online schedule to minimize the maximum weighted completion time of jobs or the total weighted completion times of jobs. We present two best possible online algorithms with the competitive ratio of both $\frac{\sqrt{5}+1}{2}$.

参考文献

1 唐国春, 张峰, 罗守成, 刘丽丽. 现代排序论[M]. 上海: 上海科学普及出版社, 2003.
2 万国华. 排序与调度的理论、模型和算法[M]. 北京: 清华大学出版社, 2019.
3 Blazewicz J , Ecker K , Pesch E , et al. Handbook on Scheduling-From Theory to Practice[M]. Berlin: Springer, 2019.
4 Oron D , Shabtay D , Steiner G . Single machine scheduling with two competing agents and equal job processing times[J]. European Journal of Operational Research, 2015, 244, 86- 99.
5 Chen R B , Yuan J J . Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices[J]. 4OR-A Quarterly Journal of Operations Research, 2020, 18, 177- 196.
6 Yuan J J , NG C T , Cheng T C E . Scheduling with release dates and preemption to minimize multiple max-form objective functions[J]. European Journal of Operational Research, 2020, 280, 860- 875.
7 Zhao Q L , Yuan J J . Bicriteria scheduling of equal length jobs on uniform parallel machines[J]. Journal of Combinatorial Optimization, 2020, 39, 637- 661.
8 Li W J. A best possible online algorithm for the parallel-machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2015, 32: 1550030(1-10).
9 Chai X, Lu L F, Li W H, et al. Best-possible online algorithms for single machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2018, 35: 1850048(1-10).
10 Li W H , Chai X . Online scheduling on bounded batch machines to minimize the maximum weighted completion time[J]. Journal of the Operations Research Society of China, 2018, 6, 455- 465.
11 Anderson E J , Potts C N . Online scheduling of a single machine to minimize total weighted completion time[J]. Mathematics of Operations Research, 2004, 29, 686- 697.
12 Ma R , Yuan J J . Online scheduling to minimize the total weighted completion time plus the rejection cost[J]. Journal of Combinatorial Optimization, 2017, 34, 483- 503.
13 Megow N , Schulz A S . On-line scheduling to minimize average completion time revisited[J]. Operations Research Letters, 2004, 32, 485- 490.
14 Correa J R , Wagner M R . LP-based online scheduling: from single to parallel machines[J]. Mathematical Programming, 2009, 119, 109- 136.
15 Tao J P . A better online algorithm for the parallel machine scheduling to minimize the weighted completion time[J]. Computer and Operations Research, 2014, 43, 215- 224.
16 Tao J P , Huang R H , Liu T D . A 2.28-competitive algorithm for online scheduling on identical machines[J]. Journal of Industrial and Management Optimization, 2015, 11, 185- 198.
17 Ma R , Tao J P . An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time[J]. Journal of Industrial and Management Optimization, 2018, 14, 497- 510.
文章导航

/