运筹学学报 >
2022 , Vol. 26 >Issue 2: 55 - 63
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2022.02.005
工件的释放时间和加工时间具有一致性的单机在线排序问题研究
收稿日期: 2021-02-26
网络出版日期: 2022-05-27
基金资助
河南省自然科学基金(222300420503);河南省高校重点基础研究基金(22A110015);河南省高校重点基础研究基金(20ZX004);河南省高校重点基础研究基金(22ZX009);河南省高校青年骨干教师培养计划基金(2019GGJS202);河南省高校青年骨干教师培养计划基金(2018XJGGJS-10)
Research on the single-machine online schedule in which the jobs' release times and processing times are agreeable
Received date: 2021-02-26
Online published: 2022-05-27
李文杰, 李钰晶, 刘海玲 . 工件的释放时间和加工时间具有一致性的单机在线排序问题研究[J]. 运筹学学报, 2022 , 26(2) : 55 -63 . DOI: 10.15960/j.cnki.issn.1007-6093.2022.02.005
There are
Key words: online scheduling; online algorithm; agreeable; weighted completion times
| 1 | 唐国春, 张峰, 罗守成, 刘丽丽. 现代排序论[M]. 上海: 上海科学普及出版社, 2003. |
| 2 | 万国华. 排序与调度的理论、模型和算法[M]. 北京: 清华大学出版社, 2019. |
| 3 | Blazewicz J , Ecker K , Pesch E , et al. Handbook on Scheduling-From Theory to Practice[M]. Berlin: Springer, 2019. |
| 4 | Oron D , Shabtay D , Steiner G . Single machine scheduling with two competing agents and equal job processing times[J]. European Journal of Operational Research, 2015, 244, 86- 99. |
| 5 | Chen R B , Yuan J J . Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices[J]. 4OR-A Quarterly Journal of Operations Research, 2020, 18, 177- 196. |
| 6 | Yuan J J , NG C T , Cheng T C E . Scheduling with release dates and preemption to minimize multiple max-form objective functions[J]. European Journal of Operational Research, 2020, 280, 860- 875. |
| 7 | Zhao Q L , Yuan J J . Bicriteria scheduling of equal length jobs on uniform parallel machines[J]. Journal of Combinatorial Optimization, 2020, 39, 637- 661. |
| 8 | Li W J. A best possible online algorithm for the parallel-machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2015, 32: 1550030(1-10). |
| 9 | Chai X, Lu L F, Li W H, et al. Best-possible online algorithms for single machine scheduling to minimize the maximum weighted completion time[J]. Asia-Pacific Journal of Operational Research, 2018, 35: 1850048(1-10). |
| 10 | Li W H , Chai X . Online scheduling on bounded batch machines to minimize the maximum weighted completion time[J]. Journal of the Operations Research Society of China, 2018, 6, 455- 465. |
| 11 | Anderson E J , Potts C N . Online scheduling of a single machine to minimize total weighted completion time[J]. Mathematics of Operations Research, 2004, 29, 686- 697. |
| 12 | Ma R , Yuan J J . Online scheduling to minimize the total weighted completion time plus the rejection cost[J]. Journal of Combinatorial Optimization, 2017, 34, 483- 503. |
| 13 | Megow N , Schulz A S . On-line scheduling to minimize average completion time revisited[J]. Operations Research Letters, 2004, 32, 485- 490. |
| 14 | Correa J R , Wagner M R . LP-based online scheduling: from single to parallel machines[J]. Mathematical Programming, 2009, 119, 109- 136. |
| 15 | Tao J P . A better online algorithm for the parallel machine scheduling to minimize the weighted completion time[J]. Computer and Operations Research, 2014, 43, 215- 224. |
| 16 | Tao J P , Huang R H , Liu T D . A 2.28-competitive algorithm for online scheduling on identical machines[J]. Journal of Industrial and Management Optimization, 2015, 11, 185- 198. |
| 17 | Ma R , Tao J P . An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time[J]. Journal of Industrial and Management Optimization, 2018, 14, 497- 510. |
/
| 〈 |
|
〉 |