运筹学学报 >
2022 , Vol. 26 >Issue 1: 85 - 98
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2022.01.006
带基数约束的次模+超模(BP)函数最大化问题的流算法
收稿日期: 2021-06-14
网络出版日期: 2022-03-14
基金资助
国家自然科学基金(12131003);国家自然科学基金(12001025)
Streaming algorithms for the maximization of submodular+supermodular functions with a cardinality constraint
Received date: 2021-06-14
Online published: 2022-03-14
本文研究在基数约束下具有单调性的次模+超模函数最大化问题的流模型。该问题在数据处理、机器学习和人工智能等方面都有广泛应用。借助于目标函数的收益递减率($\gamma$),我们设计了单轮读取数据的过滤-流算法,并结合次模、超模函数的全局曲率($\kappa^{g}$)得到算法的近似比为$\min\left\{\frac{(1-\varepsilon)\gamma}{2^{\gamma}},1-\frac{\gamma}{2^{\gamma}(1-\kappa^{g})^{2}}\right\}$。数值实验验证了过滤-流算法对BP最大化问题的有效性并且得出:次模函数和超模函数在同量级条件下,能保证在较少的时间内得到与贪婪算法相同的最优值。
连月芳, 张真宁, 赵中睿, 堵丁柱 . 带基数约束的次模+超模(BP)函数最大化问题的流算法[J]. 运筹学学报, 2022 , 26(1) : 85 -98 . DOI: 10.15960/j.cnki.issn.1007-6093.2022.01.006
In this paper, wepropose streaming algorithms for the maximization ofsubmodular+supermodular functions with cardinality constraint, whichhas wide applications in data processing, machine learning andartificial intelligence. By means of the diminishing return ratioof the objective function, we design a one-pass sieve-streamingalgorithm and get the approximate ratio $\min\left\{\frac{(1-\varepsilon)\gamma}{2^{\gamma}}, 1-\frac{\gamma}{2^{\gamma}(1-\kappa^{g})^{2}}\right\}$. Numerical experiments show that the sieve-streaming algorithm is effective forthe BP-maximization problem and can guarantee the same result asthe greedy algorithm with less time if submodular function andsupermodular are in the same order of magnitude.
| 1 | Agrawal R, Gollapudi S, Halverson A, et al. Diversifying search results[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining, 2009: 5-14. |
| 2 | Golovin D , Krause A . Adaptive submodularity: Theory and applications in active learning and stochastic optimization[J]. Journal of Artificial Intelligence Research, 2012, 42 (1): 427- 486. |
| 3 | Gomez-Rodriguez M , Leskovec J , Krause A . Inferring networks of diffusion and influence[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 5 (4): 1- 37. |
| 4 | Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003: 137-146. |
| 5 | Wei K, Iyer R, Bilmes J. Submodularity in data subset selection and active learning[C]//Proceedings of International Conference on Machine Learning (ICML), 2015. |
| 6 | Topkis D M . Supermodularity and Complementarity[M]. Princeton: Princeton University Press, 2011. |
| 7 | Nemhauser G L , Wolsey L A , Fisher M L . An analysis of approximations for maximizing submodular set functions-I[J]. Mathematical Programming, 1978, 14 (1): 265- 294. |
| 8 | Conforti M , Cornuéjols G . Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem[J]. Discrete Applied Mathematics, 1984, 7 (3): 251- 274. |
| 9 | Sviridenko M , Vondrák , J , Ward J . Optimal approximation for submodular and supermodular optimization with bounded curvature[J]. Mathematics of Operations Research, 2017, 42 (4): 1197- 1218. |
| 10 | Bai W, Bilmes J A. Greed is Still Good: Maximizing Monotone Submodular+Supermodular (BP)functions[C]//International Conference on Machine Learning, 2018: 304-313. |
| 11 | Ji S, Xu D, Li M, et al. Stochastic greedy algorithm is still good: Maximizing submodular+ supermodular functions[C]//World Congress on Global Optimization, 2019: 488-497. |
| 12 | Muthukrishnan S. Data streams: algorithms and applications[M]//Foundations and Trends in Theoretical Computer Science, 2005: 117-236. |
| 13 | Ajtai M, Jayram T S, Kumar R, et al. Approximate counting of inversions in a data stream[C]//Proceedings of the thiry-fourth annual ACM symposium on Theory of Computing, 2002: 370-379. |
| 14 | Dueck D, Frey B J. Non-metric affinity propagation for unsupervised image categorization[C]//2007 IEEE 11th International Conference on Computer Vision, 2007: 1-8. |
| 15 | El-Arini K, Guestrin C. Beyond keyword search: discovering relevant scientific literature[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011: 439-447. |
| 16 | El-Arini K, Veda G, Shahaf D, et al. Turning down the noise in the blogosphere[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 289-298. |
| 17 | Gomes R, Krause A. Budgeted nonparametric learning from data streams[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010: 391-398. |
| 18 | Zoubin G. Scaling the indian buffet process via submodular maximization[C]//International Conference on Machine Learning, 2013: 1013-1021. |
| 19 | Badanidiyuru A, Mirzasoleiman B, Karbasi A, et al. Streaming submodular maximization: massive data summarization on the fly[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 671-680. |
| 20 | Yu Q , Li H , Liao Y , et al. Fast budgeted influence maximization over multi-action event logs[J]. IEEE Access, 2018, 6, 14367- 14378. |
| 21 | Norouzi-Fard A, Tarnawski J, Mitrovic S, et al. Beyond 1/2-approximation for submodular maximization on massive data streams[C]//International Conference on Machine Learning, 2018: 3826-3835. |
| 22 | Elenberg E, Dimakis A G, Feldman M, et al. Streaming weak submodularity: interpreting neural networks on the fly[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4044-4054. |
| 23 | Wang Y J , Xu D C , Wang Y S , et al. Non-submodular maximization on massive data streams[J]. Journal of Global Optimization, 2020, 76 (4): 729- 743. |
| 24 | Barbosa R, Ene A, Nguyen H L, et al. The power of randomization: distributed submodular maximization on massive datasets[C]//International Conference on Machine Learning, 2015: 236-1244. |
| 25 | Barbosa R, Ene A, Nguyen H L, et al. A new framework for distributed submodular maximiza tion[C]//2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 2016: 645-654. |
| 26 | Buchbinder N, Feldman M, Schwartz R. Online submodular maximization with preemption[C]//Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, 2014: 1202-1216. |
| 27 | Chakrabarti A , Kale S . Submodular maximization meets streaming: matchings, matroids, and more[J]. Mathematical Programming, 2015, 154 (1): 225- 247. |
| 28 | Mirzasoleiman B, Badanidiyuru A, Karbasi A, et al. Lazier than lazy greedy[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 1812-1818. |
| 29 | Fujishige S . Submodular Functions and Optimization[M]. Amsterdam: Elsevier, 2005. |
| 30 | Bian A A, Buhmann J M, Krause A, et al. Guarantees for greedy maximization of non submodular functions with applications[C]//Proceedings of the 34th International Conference on Machine Learning (ICML), 2017: 498-507. |
| 31 | 杨瑞琪, 徐大川, 杜东雷, 等. 次模函数最大化的流算法综述[J]. 运筹学学报, 2020, 24 (2): 73- 86. |
/
| 〈 |
|
〉 |