混合图上最小-最大圈覆盖问题的近似算法

展开
  • 1. 上海海洋大学信息学院, 上海 201306
    2. 上海电力大学, 上海 200090
    3. 华东理工大学理学院, 上海 200237
黄冬梅 E-mail: dmhuang@shou.edu.cn

收稿日期: 2020-01-02

  网络出版日期: 2021-03-05

基金资助

国家自然科学基金(11701363);国家自然科学基金(41671431);上海市自然科学基金(19ZR1411800)

Approximation algorithm for min-max cycle cover problem on a mixed graph

Expand
  • 1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
    2. Shanghai University of Electric Power, Shanghai 200090, China
    3. School of Science, East China University of Science and Technology, Shanghai 200237, China

Received date: 2020-01-02

  Online published: 2021-03-05

摘要

考虑一个混合图上的最小-最大圈覆盖问题。给定一个正整数k和一个混合加权图G=(VEA),这里V表示顶点集,E表示边集,A表示弧集。E中的每条边和A中的每条弧关联一个权重。问题的要求是确定k个环游,使得这k个环游能够经过A中的所有弧。目标是极小化最大环游的权重。该问题是运筹学和计算机科学中一个重要的组合优化问题,它和它的变形在诸如快递配送、垃圾收集、积雪清扫等相关行业具有广泛应用。针对该问题,通过结合二分搜索和环游撕裂的技巧,首次给出了一个近似比为37/5的近似算法。

本文引用格式

包晓光, 路超, 黄冬梅, 余炜 . 混合图上最小-最大圈覆盖问题的近似算法[J]. 运筹学学报, 2021 , 25(1) : 107 -113 . DOI: 10.15960/j.cnki.issn.1007-6093.2021.01.010

Abstract

We consider a min-max cycle cover problem, in which we are given a positive integer k and a mixed weighted graph G=(V, E, A) with vertex set V, edge set E and arc set A. Each edge in E and each arc in A is associated a weight, respectively. The problem is to determine k tours such that the k tours pass through all the arcs in A. The objective is to minimize the weight of the maximum weight tour. The problem is an important combinatorial optimization problem in operations research and computer science. This problem and its variants are widely used in related industries such as express delivery, trash collection, snow removal, etc. For the problem, we propose the first constant-factor approximation algorithm with ratio 37/5 by using binary search and tour splitting techniques.

参考文献

1 Frederickson G N , Hecht M S , Kim C E . Approximation algorithms for some routing problems[J]. Siam Journal on Computing, 1978, 7 (2): 178- 193.
2 Chyu C C . A mixed-strategy heuristic for the mixed arc routing problem[J]. Journal of the Chinese Institute of Industrial Engineers, 2001, 18 (3): 68- 76.
3 Frederickson G N . Approximation algorithms for Some Postman Problems[J]. Journal of the ACM, 1979, 26 (3): 538- 554.
4 Arkin E M , Hassin R , Levin A . Approximations for minimum and min-max vehicle routing problems[J]. Journal of Algorithms, 2006, 59 (1): 1- 18.
5 管梅谷. 奇偶点图上作业法[J]. 数学学报, 1960, 10 (3): 263- 266.
6 Edmonds J , Johnson E L . Matching, Euler tours and the Chinese postman[J]. Mathematical Programming, 1973, 5 (1): 88- 124.
7 Christofides N. Worst-case analysis of a new heuristic for the travelling salesman problem. Pittsburgh: Graduate School of Industrial Administration, Carnegie-Mellon University, 1976.
8 Yu W , Liu Z H . Improved approximation algorithms for some min-max and minimum cycle cover problems[J]. Theoretical Computer Science, 2016, 654 (22): 45- 58.
9 Xu W Z , Liang W F , Lin X L . Approximation algorithms for min-max cycle cover problems[J]. IEEE Transactions on Computers, 2015, 64 (3): 600- 613.
文章导航

/