新型冠状病毒疫情导致防护物资匮乏,增加了医护人员受感染的风险.现构建了防护物资最优生产-分配-定价模型,并在此基础上提出了广义影子价格的概念,以此作为防护物资定价的参考和依据,通过价格引导生产型企业合理扩大生产规模,以解决当前防护物资短缺的困难.广义影子价格反映了企业产能提升成本等因素,相比传统影子价格更适用于为防护物资统一定价.另外,利用广义影子价格与拉格朗日乘子集合之间的联系,提出了一个线性规划模型用以计算广义影子价格.数值仿真结果说明了广义影子价格在防护物资定价上的适用性.
The outbreak of the new coronavirus causes the shortage of protective supplies, which increases the risk of infection of medical practitioners. In the epidemic situation, the market prices of the protective suppliers are distorted and cannot be applied. In this paper, we propose a mathematical programming model to guide the production, distribution and pricing mechanism of protective suppliers. Based on the model, we propose the notion of the generalized shadow price which can be used to price the protective suppliers, and further guide the manufactures to optimize their production. The advantage of the generalized shadow price over the traditional ones is that it reflects the cost for manufactures to enhance their production capacities. Furthermore, we build the relationship between the generalized shadow price and the set of Lagrange multipliers, and propose a linear programming model to compute the generalized shadow price. The numerical simulation tests show the practical value of generalized shadow prices in pricing the protective suppliers in the epidemic situation.
[1] 巩玥, 史志祥, 陈菁, 等.冠状病毒的研究现状[EB/OL]. (2020-02-25)[2020-02-25]. http://kns.cnki.net/kcms/detail/11.4816.Q.20200224.1748.002.html.
[2] 刘丁.新型冠状病毒肺炎疫情期间医院感染管理工作的思考[EB/OL].(2020-02-20)[2020-02-25]. http://kns.cnki.net/kcms/detail/50.1097.r.20200220.1117.005.html.
[3] 李晔, 蔡冉, 陆烨. 应对新型冠状病毒肺炎防护服的选择和使用[EB/OL].(2020-02-21)[2020-02-25]. http://kns.cnki.net/kcms/detail/43.1390.R.20200219.1436.002.html.
[4] 张利.突发公共卫生事件一级响应下医院接受捐赠的风险管理和应对[EB/OL]. (2020-02-19)[2020-02-25]. https://doi.org/10.14055/j.cnki.33-1056/f.20200219.001.
[5] 陈方若.大疫当前谈供应链思维, 从"啤酒游戏"说起[EB/OL].(2020-02-23)[2020-02-25]. http://www.bulletin.cas.cn/zgkxyyk/ch/reader/viewnews.aspx?id=20200223121216395.
[6] 汪传旭. 基于腐损程度的季节性产品动态定价与订单量的集成优化[J]. 运筹学学报, 2009, 13(4):71-82.
[7] 连志刚, 朱钒, 管在林, 等. 生产计划中阶梯型价格原料最优配置, 2008, 12(4):62-70.
[8] Bertsekas D P, Nedi A, Ozdaglar A E. Convex Analysis and Optimization[M].北京:清华大学出版社, 2006.
[9] Beck A. First Order Methods in Optimization[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2017.
[10] 任蔼堂. 我国稀缺资源的价值衡量:社会主义市场经济条件下的影子价格[M]. 北京:中国物价出版社, 2001.
[11] 周小川. 数学规划与经济分析[M]. 北京:中国金融出版社, 2019.
[12] Jansen B, et al. Sensitivity analysis in linear programming:just be careful![J]. European Journal of Operational Research, 1997, 101(1):15-28.
[13] Bertsekas D P, Ozdaglar A E. Pseudonormality and a Lagrange multiplier theory for constrained optimization[J]. Journal of Optimization Theory and Applications, 2002, 114(2):287-343.
[14] Tao J, Gao Y. Computing shadow prices with multiple Lagrange multipliers[J]. Journal of Industrial and Management Optmization, 2020, DOI:10.3934/Jimo.2020070.
[15] 马赞甫. 线性规划中影子价格的"非唯一性"[J]. 系統工程, 2007, 25(4):119-122.
[16] Varian H R. Intermediate Microeconomics with Calculus:a Modern Approach[M]. London:WW Norton & Company, 2014.
[17] 岳丹丹. W服装公司成本控制研究[D]. 天津:天津师范大学, 2019.
[18] Aucamp D C, Steinberg D I. The computation of shadow prices in linear programming[J]. Journal of the Operational Research Society, 1982, 33(6):557-565.
[19] Akgül M. A note on shadow prices in linear programming[J]. Journal of the Operational Research Society, 1984, 35(5):425-431.
[20] 马昌凤, 林伟川. 现代数值计算方法:MATLAB 版[M]. 北京:科学出版社, 2008.