具有两类故障特性的M/M/1排队系统均衡分析

展开
  • 燕山大学理学院, 河北秦皇岛 066004

收稿日期: 2018-05-18

  网络出版日期: 2019-12-04

基金资助

河北省自然科学基金(No.A2019203313),河北省高等学校科学研究重点项目(No.ZD2019079)

Equilibrium analysis in the M/M/1 queue with two types of breakdowns

Expand
  • School of Science, Yanshan University, Qinhuangdao 066004, Hebei, China

Received date: 2018-05-18

  Online published: 2019-12-04

摘要

考虑顾客在具有两种故障特性的马尔科夫排队系统中的均衡策略.在该系统中,正常工作的服务台随时都可能发生故障.假设服务台只要发生故障就不再接收新顾客,并且可能出现的故障类型有两种:(1)不完全故障:此类故障发生时,服务台仍有部分服务能力,以较低服务率服务完在场顾客后进行维修;(2)完全故障:此类故障发生时,服务台停滞服务并且立即进行维修,维修结束后重新接收新顾客.顾客到达时为了实现自身利益最大化都有选择是否进队的决策,基于线性“收益-损失”结构函数,分析了顾客在系统信息完全可见和几乎不可见情形下的均衡进队策略,及系统的平均社会收益,并在此基础上,通过一些数值例子展示系统参数对顾客策略行为的影响.

本文引用格式

张淞钛, 徐秀丽 . 具有两类故障特性的M/M/1排队系统均衡分析[J]. 运筹学学报, 2019 , 23(4) : 131 -142 . DOI: 10.15960/j.cnki.issn.1007-6093.2019.04.012

Abstract

This paper considers the equilibrium behavior of customers in a Markovian queue with two types of breakdowns, where the normal server can get a breakdown at any time. The system does not admit a new arrival once a breakdown happens, and there may exist two independent types of breakdowns: (1) partial breakdown: the server continues to serve the customers on spot at a low rate and is repaired when the system is empty; (2) full breakdown: the server stagnates service and is repaired immediately. When the repair is over, new arrivals will be accepted. Assuming that all the customers have the option of joining or balking in order to maximize their own benefits and basing on a linear reward-cost structure, we analyze the equilibrium joining strategies of the customers and the average social benefits of the system in the fully observable case and the almost unobservable case, respectively. And on this basis, the effect of several parameters on customers’ strategic behavior is presented by some numerical examples.

参考文献

[1] Naor P. The regulation of queue size by levying tolls[J]. Econometrica, 1969, 37(1):15-24.
[2] Edelson N M, Hilderbrand D K. Congestion tolls for poisson queuing processes[J]. Econometrica, 1975, 43(1):81-92.
[3] Hassin R, Haviv M. To Queue or Not to Queue:Equilibrium Behavior in Queueing Systems[M]. Boston:Kluwer Academic, 2003.
[4] Hassin R. Rational Queueing[M]. Boca Raton:CRC Press, 2016.
[5] 王金亭. 排队博弈论基础[M]. 北京:科学出版社, 2016.
[6] Economou A, Kanta S. Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs[J]. Operation Research Letters, 2008, 36(6):696-699.
[7] Li L, Wang J, Zhang F. Equilibrium customer strategies in Markovian queues with partial breakdowns[J]. Computers & Industrial Engineering, 2013, 66(4):751-757.
[8] Li X, Wang J, Zhang F. New results on equilibrium balking strategies in the single-server queue with breakdowns and repairs[J]. Applied Mathematics & Computation, 2014, 241(241):380-388.
[9] Xu B, Xu X. Equilibrium srategic behavior of customers in the M/M/1 queue with partial failures and repairs[J]. Operational Research, doi.org/10.1007/s12351-016-0264-7, 2016.
[10] Yu S, Liu Z, Wu J. Strategic behavior in the partially observable Markovian queues with partial breakdowns[J]. Operations Research Letters, 2017, 45(5):471-474.
文章导航

/