在一个给定的拓扑网络中研究关于数据传输的二人随机博弈模型.两个局中人(源节点)试图通过一个公共节点向目的节点传输随机数据包,这些数据包被分为重要的数据包和不重要的数据包两类,假设每个局中人都有一个用于存储数据包的有限容量的缓冲器.通过构造数据传输的成本分摊和奖励体系,把这种动态的冲突控制过程建模为具有有限状态集合的随机博弈,研究局中人在这种随机博弈模型下的非合作以及合作行为.在非合作情形下,给出纳什均衡的求解算法;在合作情形下,选择Shapley值作为局中人支付总和的分配方案,并讨论其子博弈一致性,提出使得Shapley值为子博弈一致的分配补偿程序.
Considering a stochastic game model of data transmission in a network of a given topology. Two players (source nodes) try to transmit packages to the destination node through a common node. These packages are divided into important packages and not important packages. Each player has a buffer of limited capacity to store packages. We define a system of cost and reward, and this dynamic conflict control process is modeled as stochastic game with a finite set of states. We study the non-cooperative and cooperative behaviors of players. We calculate the Nash equilibrium under the noncooperative situation. Shapley value is chosen as the solution of the cooperation game. We discuss the subgame consistency of Shapley value and propose a imputation distribution procedure.
[1] Roberts L G. ALOHA packet system with and without slots and capture[J]. ACM SIGCOMM Computer Communication Review, 1975, 5(2):28-42.
[2] Altman E, Barman D, Azouzi R E, et al. A game theoretic approach for delay minimization in slotted ALOHA[C]//2004 IEEE International Conference on Communications. Paris:IEEE, 2004, 3999-4003.
[3] Marban S, Van de ven P, Borm P, et al. ALOHA networks:a game-theoretic approach[J]. Mathematical Methods of Operations Research, 2013, 78(2):221-242.
[4] Sagduyu Y E, Ephremides A. A game-theoretic look at simple relay channel[J]. Wireless Networks, 2006, 12(5):545-560.
[5] Afghah F, Razi A, Abedi A. Stochastic game theoretical model for packet forwarding in relay network[J]. Telecommunication Systems, 2013, 52(4):1877-1893.
[6] Herings P J-J, Peeters R J A P. Stationary equilibria in stochastic games:structure, selection, and computation[J]. Journal of Economic Theory, 2004, 118(1):32-60.
[7] Jaskiewicz A, Nowak A. On pure stationary almost Markov Nash equilibria in nonzero-sum ARAT stochastic games[J]. Mathematical Methods of Operations Research, 2015, 81(2):169-179.
[8] Rosenberg D, Solan E, Vieille N. The max-min value of stochastic games with imperfect monitoring[J]. International Journal of Game Theory, 2003, 32(1):133-150.
[9] Petrosyan L A. Cooperative stochastic games[M]//Advances in Dynamic Games, Annals of the International Society of Dynamic Games. Boston:Birkhäuser, 2006, 139-146.
[10] Petrosyan L A, Baranova E V. Cooperative stochastic games in stationary strategies[M]//Game Theory and Applications. New York:Nova Science Publishers, 2006, 7-17.
[11] Petrosyan L A. Stable solutions of differential games with many participants[J]. Viestnik of Leningrad University, 1977, 19:46-52.
[12] Petrosyan L A, Danilov N N. Stability of solutions in non-zero sum differential games with transferable payoffs[J]. Vestnik of Leningrad University, 1979, 1:52-59.
[13] Parilina E M. Strategic support of the Shapley value in stochastic games[J]. Contributions to Game Theory and Management, 2016, 9:246-265.
[14] Lemke C E, Howson J T. Equilibrium points of bimatrix games[J]. Journal of the Society for Industrial and Applied Mathematics, 1964, 12(2):413-423.
[15] Fink A M. Equilibrium in a stochastic n-person game[J]. Journal of Science of the Hiroshima University, Series A-I (Mathematics), 1964, 28(1):89-93.
[16] 高红伟, 彼得罗相(俄). 动态合作博弈[M]. 北京:科学出版社, 2009.
[17] Dockner E J, Jorgensen S, Long N V, et al. Differential games in economics and management science[M]. Cambridge:Cambridge University Press, 2000.
[18] Aumann R J, Peleg B. Von Neumann-Morgenstern solutions to cooperative games without side payments[J]. Bulletin of the American Mathematical Society, 1960, 66(3):173-180.
[19] Gao H W, Petrosyan L A, Qiao H, et al. Cooperation in two-stage games on undirected networks[J]. Journal of Systems Science and Complexity, 2017, 30(3):680-693.
[20] Wang L, Gao H W, Petrosyan L A, et al. Strategically supported cooperation in dynamic games with coalition structures[J]. Science China-Mathematics, 2016, 59(5):1015-1028.