运筹学学报
• 运筹学 • 上一篇 下一篇
丁超1,*
收稿日期:
出版日期:
发布日期:
通讯作者:
基金资助:
国家自然科学基金 (Nos. 11671387, 11301515)
DING Chao1,*
Received:
Online:
Published:
摘要:
由于近年来实际问题特别是大数据应用的发展, 矩阵优化问题越来越得到优化研究者, 甚至是其他领域的研究者的高度关注, 成为热点问题. 优化问题的扰动性分析是优化理论研究的基础与核心, 为包括算法设计在内的优化研究提供重要的理论基础. 由于矩阵优化问题的非多面体性, 使得相应扰动分析理论的研究本质上与经典的多面体优化问题(非线性规划)不同. 结合文献~[1,2], 简要介绍矩阵优化扰动性分析方面取得的若干最新进展.
关键词: 矩阵优化, 扰动性分析, 鲁棒孤立平稳性, 平稳性, 度量次正则
Abstract:
Matrix optimization problems (MOPs) have been recognized in recent years to be a powerful tool to model many important applications arising from emerging fields such as data science {within and beyond the optimization community}. Perturbation analysis of optimization problems play a fundamental and crucial role in optimization, which provided important theoretical foundation for algorithm designing and others. Science MOPs are non-polyhedral, the corresponding analysis is totally different from that of the classical polyhedral case (e.g., the nonlinear programming). Basing on results obtained in [1,2], we summary the recent progress on perturbation analysis of MOPs.
Key words: matrix optimization, perturbation analysis, robustly isolated calmness, calmness, metric subregularity
丁超. 矩阵优化扰动性分析的若干进展[J]. 运筹学学报, doi: 10.15960/j.cnki.issn.1007-6093.2017.04.007.
DING Chao. Preemptive online algorithms for scheduling[J]. Operations Research Transactions, doi: 10.15960/j.cnki.issn.1007-6093.2017.04.007.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2017.04.007
https://www.ort.shu.edu.cn/CN/Y2017/V21/I4/103