[1] Yu P L. Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives [J]. Journal of Optimization Theory and Applications, 1974, 14(3): 319-377.
[2] Jeyakumar V. A generalization of a minimax theorem of Fan via a theorem of the alternative [J]. Journal of Optimization Theory and Applications, 1986, 48(3): 525-533.
[3] Tanaka T. Generalized quasiconvexities, cone saddle points, and minimax theorems for vector-valued functions [J]. Journal of Optimization Theory and Applications, 1994, 81(2): 355-377.
[4] Aubin J-P, Frankowska H. Set-Valued Analysis [M]. Boston: Birkh\"{a}user, 1990.
[5] Khan A A, Tammer C, Z\u{a}linescu C. Set-Valued Optimization-An Introduction with Applications [M]. Berlin: Springer, 2015.
[6] Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps [J]. Journal of Optimization Theory and Applications, 2000, 107(3): 627-640.
[7] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions [J]. Journal of Optimization Theory and Applications, 2001, 110(2): 413-427.
[8] Sach P H. New generalized convexity notion for set-valued maps and application to vector optimization [J]. Journal of Optimization Theory and Applications, 2005, 125(1): 157-179.
[9] Kuroiwa D, Tanaka T, Ha T X D. On cone convexity of set-valued maps [J]. Nonlinear Analysis: Theory, Methods $\&$ Applications, 1997, 30(3): 1487-1496.
[10] Kuroiwa D. Convexity for set-valued maps [J]. Applied Mathematics Letters, 1996, 9(2): 97-101.
[11] Benoist J, Popovici N. Characterizations of convex and quasiconvex set-valued maps [J]. Mathematical Methods of Operations Research, 2003, 57(3): 427-435.
[12] Luc D T. Theory of Vector Optimization [M]. Berlin: Springer, 1989.
[13] Lin Y C, Ansari Q H, Lai H C. Minimax theorems for set-valued mappings under cone-convexities [J]. Abstract and Applied Analysis, 2012, DOI: 10.1155/2012/310818.
[14] G\"{o}pfert A, Riahi H, Tammer C, et al. Variational Methods in Partially Ordered Spaces [M]. New York: Springer, 2003.
[15] Jeyakumar V, Oettli W, Natividad M. A solvability theorem for a class of quasiconvex mappings with applications to optimization [J]. Journal of Mathematical Analysis and Applications}, 1993, 179(2): 537-546.
[16] Li S J, Chen G Y, Teo K L, et al. Generalized minimax inequalities for set-valued mappings [J]. Journal of Mathematical Analysis and Applications, 2003, 281(2): 707-723.
[17] Chen G Y, Huang X X, Yang X Q. Vector Optimization-Set-Valued and Variational Analysis [M]. Berlin: Springer, 2005. |