运筹学学报 ›› 2014, Vol. 18 ›› Issue (3): 33-46.

• 运筹学 • 上一篇    下一篇

可分离凸优化问题的非精确平行分裂算法

杨赟1, 彭拯1,*   

  1. 1. 福州大学数学与计算机科学学院, 福州 350108
  • 出版日期:2014-09-15 发布日期:2014-09-15
  • 通讯作者: 彭拯 E-mail:pzheng@fzu.edu.cn
  • 基金资助:

    国家自然科学基金(No. 61170308), 福建省自然科学基金(No. 2011J01008), 福州大学科技启动基金(No. 2013-XQ-29)

An inexact parallel splitting method for separable convex optimization problem

YANG Yun1, PENG Zheng1,*   

  1. 1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
  • Online:2014-09-15 Published:2014-09-15

摘要: 针对一类可分离凸优化问题提出了一种非精确平行分裂算法. 该算法充分利用了所求解问题的可分离结构, 并对子问题进行非精确求解. 在适当的条件下, 证明了所提出的非精确平行分裂算法的全局收敛性, 初步的数值实验说明了算法有效性.

关键词: 凸优化, 可分离结构, 变分不等式, 平行分裂算法, 非精确

Abstract: In this paper, an inexact parallel splitting method is proposed for a class of separable convex optimization problem. The proposed method makes full use of the separability of the problem under consideration, and all sub-problems are solved inexactly. Under some suitable conditions, the convergence of the proposed method is proved. Some primary numerical results indicate the validity of the proposed method.

Key words: convex optimization, separable structure, variational inequality, parallel splitting method, inexact

中图分类号: