运筹学学报 ›› 2014, Vol. 18 ›› Issue (3): 99-103.

• 运筹学 • 上一篇    下一篇

二阶数乘问题的一个最优算法

万龙   

  1. 1. 江西财经大学信息管理学院, 南昌 330013
  • 出版日期:2014-09-15 发布日期:2014-09-15
  • 通讯作者: 万龙 E-mail:cocu3328@163.com
  • 基金资助:

    江西省自然科学基金项目(No. 20142BAB211017), 江西财经大学校级课题项目(No. 06162015)

An optimal algorithm for the two-order multiple problem

WAN Long   

  1. 1. School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China
  • Online:2014-09-15 Published:2014-09-15

摘要: 研究一个有趣的组合优化问题------二阶数乘问题. 问题描述如下: 给定~$n\geq 2$~个正整数~$a_1, a_2, \cdots, a_n$, 设$\pi$为$\{1,2,\cdots,n\}$的一个置换, 表示该问题的一个解,试图找到一个置换~$\pi$~以至~$\sum^n_{i=1}a_{\pi_{i}} a_{\pi_{i+1}}$~最小, 在这里~$\pi_{n+1}=\pi_1$. 给出了一个算法复杂度为\,$O(n\log{n})$\,的最优算法.

关键词: 二阶数乘, 算法复杂度, 最优算法

Abstract: In this paper,  we present a new and interesting combination optimization problem called two-order multiple problem. The problem is stated as follows. There are $n\geq 2$ integers $a_1$, $a_2$, $\cdots$, $a_n$, let $\pi$ be a permutation of $\{1,2,\cdots,n\}$ which also shows a solution to the problem. We must try to find the optimal permutation $\pi$ so that the value of $\sum^n_{i=1}a_{\pi_{i}}a_{\pi_{i+1}}$ is minimal, where $\pi_{n+1}=\pi_1$. We provide a polynomial-time algorithm with the complexity of $O(n\log{n})$ for it.

Key words: two-order multiple, algorithm complexity, optimal algorithm

中图分类号: