| 15 |
Liu Z W , Li M Q , Han C Y , et al. STDNet: Rethinking disentanglement learning with information theory[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 8 (35): 10407- 10421.
|
| 16 |
Zhang Z C, Liu Y L, Han C Y, et al. PetsGAN: Rethinking priors for single image generation [C]//The Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022: 3408-3416.
|
| 17 |
Zhang Z C, Liu Y L, Han C Y, et al. Generalized one-shot domain adaptation of generative adversarial networks [C]//The 36th Conference on Neural Information Processing Systems, 2022, (35): 13718-13730.
|
| 18 |
Zhang Z C, Li B N, Nie X C, et al. Towards consistent video editing with text-to-image diffusion models [C]//The 37th Conference on Neural Information Processing Systems, 2023, (36): 58508-58519.
|
| 19 |
Zhang Z C, Liu Y L, Han C Y, et al. Transforming radiance field with Lipschitz network for photorealistic 3D scene stylization [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2023: 20712-20721.
|
| 20 |
Villani C . Optimal Transport: Old and New[M]. Cham: Springer, 2009.
|
| 21 |
Ho J, Salimans T. Classifier-free diffusion guidance [EB/OL]. [2025-02-27]. arXiv: 2207.12598.
|
| 22 |
郭田徳, 李安琪, 韩丛英. 组合优化问题的机器学习求解方法[J]. 中国科学: 数学, 2025, 55 (2): 451- 480.
|
| 23 |
Liu W Z, Han C Y, Guo T D, et al. Fusion of multi-level information: Solve large-scale traveling salesman problem with an efficient framework [C]//31st International Conference on Neural Information Processing, 2025: 89-103.
|
| 24 |
Li A Q , Guo T D , Han C Y , et al. On the optimal pivot path of simplex method for linear programming based on reinforcement learning[J]. SCIENCE CHINA Mathematics. Special Issue on AI Methods for Optimization Problems, 2024, 6 (67): 1263- 1286.
|
| 25 |
Shi Y C , Han C Y , Guo T D . NeuroPrim: An attention-based model for solving NP-hard spanning tree problems[J]. SCIENCE CHINA Mathematics, 2024, 6 (67): 1359- 1376.
|
| 26 |
Wang C G, Yang Y D, Slumbers O, et al. A game-theoretic approach for improving generalization ability of TSP solvers [C]//ICLR Workshop on Gamification and Multiagent Solutions, 2022.
|
| 27 |
Graikos A , Malkin N , Jojic N , et al. Diffusion models as plug-and-play priors[J]. Advances in Neural Information Processing Systems, 2022, 35, 14715- 14728.
|
| 28 |
Sun Z , Yang Y . DIFUSCO: Graph-based diffusion solvers for combinatorial optimization[J]. Advances in Neural Information Processing Systems, 2023, 36, 3706- 3731.
|
| 29 |
Zhao H, Yu K X, Huang Y H, et al. DISCO: Efficient diffusion solver for large-scale combinatorial optimization problems [EB/OL]. [2025-02-27]. arXiv: 2406.19705.
|
| 30 |
Polu S, Sutskever I. Generative language modeling for automated theorem proving [EB/OL]. [2025-02-27]. arXiv: 2009.03393.
|
| 31 |
Wang M , Deng J . Learning to prove theorems by learning to generate theorems[J]. Advances in Neural Information Processing Systems, 2020, 33, 18146- 18157.
|
| 32 |
Lin Y, Tang S, Lyu B, et al. Goedel-Prover: A frontier model for open-source automated theorem proving [EB/OL]. [2025-02-27]. arXiv: 2502.07640.
|
| 33 |
Simonovsky M, Komodakis N. GraphVAE: Towards generation of small graphs using variational autoencoders [EB/OL]. [2025-02-27]. arXiv: 1802.03480.
|
| 34 |
Bojchevski A, Shchur O, Zugner D, et al. NetGAN: Generating graphs via random walks [C]//International Conference on Machine Learning, 2018: 610-619.
|
| 35 |
Luo T , Mo Z , Pan S J . Fast graph generation via spectral diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46, 3496- 3508.
|
| 36 |
Cao N D, Kipf T. MolGAN: An implicit generative model for small molecular graphs [EB/OL]. [2025-02-27]. arXiv: 1805.11973.
|
| 37 |
Xu M, Yu L, Song Y, et al. GeoDiff: A geometric diffusion model for molecular conformation generation [C]//10th International Conference on Learning Representations, 2022.
|
| 38 |
Ingraham J B , Baranov M , Costello Z , et al. Illuminating protein space with a programmable generative model[J]. Nature, 2023, 623, 1070- 1078.
|
| 39 |
Amirrajab S , Lorenz C , Weese J , et al. Pathology synthesis of 3D-consistent cardiac MR images using 2D VAEs and GANs[J]. Machine Learning for Biomedical Imaging, 2023, 2, 288- 311.
|
| 1 |
Kingma D P, Welling M. Auto-encoding variational bayes [C]//2nd International Conference on Learning Representations, 2014.
|
| 2 |
Higgins I, Matthey L, Pal A, et al. Beta-VAE: Learning basic visual concepts with a constrained variational framework [C]//5th International Conference on Learning Representations, 2017.
|
| 3 |
Van Den Oord A , Vinyals O , Kavukcuoglu K . Neural discrete representation learning[J]. Advances in Neural Information Processing Systems, 2017, 30, 6309- 6318.
|
| 4 |
Zhao S, Song J, Ermon S. InfoVAE: Information maximizing variational autoencoders [EB/OL]. [2025-02-27]. arXiv: 1706.02262.
|
| 5 |
Goodfellow I J , Pouget-Abadie J , Mirza M , et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 2, 2672- 2680.
|
| 6 |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]//4th International Conference on Learning Representations, 2016.
|
| 7 |
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks [C]//34th International Conference on Machine Learning, 2017: 214-223.
|
| 8 |
Ho J , Jain A , Abbeel P . Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 6840- 6851.
|
| 9 |
Nichol A Q, Dhariwal P. Improved denoising diffusion probabilistic models [C]//Proceedings of the 38th International Conference on Machine Learning, 2021.
|
| 10 |
Dhariwal P , Nichol A . Diffusion models beat GANs on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 8780- 8794.
|
| 11 |
Song J, Meng C, Ermon S. Denoising diffusion implicit models [C]//9th International Conference on Learning Representations, 2021.
|
| 12 |
Dinh L, Krueger D, Bengio Y. NICE: Non-linear independent components estimation [EB/OL]. [2025-02-27]. arXiv: 1410.8516.
|
| 40 |
Corso G, Stärk H, Jing B, et al. DiffDock: Diffusion steps, twists, and turns for molecular docking [C]//11th International Conference on Learning Representations, 2023.
|
| 41 |
Paganini M, de Oliveira L, Nachman B. CaloGAN: Simulating 3D high energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial networks [EB/OL]. [2025-02-27]. arXiv: 1712.10321.
|
| 42 |
Panos B , Kleint L , Voloshynovskiy S . Exploring mutual information between IRIS spectral lines. I. Correlations between spectral lines during solar flares and within the quiet Sun[J]. The Astrophysical Journal, 2021, 912, 121.
|
| 43 |
Cai M X, Lee K L K. $\rho$-Diffusion: A diffusion-based density estimation framework for computational physics [EB/OL]. [2025-02-27]. arXiv: 2312.08153.
|
| 44 |
Nichol A Q, Dhariwal P, Ramesh A, et al. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models [C]//International Conference on Machine Learning, 2022.
|
| 45 |
Ramesh A, Dhariwal P, Nichol A Q, et al. Hierarchical text-conditional image generation with CLIP latents [EB/OL]. [2025-02-27]. arXiv: 2204.06125.
|
| 46 |
Saharia C , Chan W , Saxena S , et al. Photorealistic text-to-image diffusion models with deep language understanding[J]. Advances in Neural Information Processing Systems, 2022, 35, 36479- 36494.
|
| 47 |
Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10684-10695.
|
| 48 |
Wu J , Zhang C , Xue T , et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[J]. Advances in Neural Information Processing Systems, 2016, 82- 90.
|
| 49 |
Groueix T, Fisher M, Kim V G, et al. AtlasNet: A Papier-Mâché approach to learning 3D surface generation [EB/OL]. [2025-02-27]. arXiv: 1802.05384.
|
| 50 |
Poole B, Jain A, Barron J T, et al. DreamFusion: Text-to-3D using 2D diffusion [C]//The 11th International Conference on Learning Representations, 2023.
|
| 51 |
Mildenhall B , Srinivasan P P , Tancik M , et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65, 99- 106.
|
| 52 |
Shi Y, Wang P, Ye J, et al. MVDream: Multi-view diffusion for 3D generation [EB/OL]. [2025-02-27]. arXiv: 2308.16512.
|
| 53 |
Tulyakov S, Liu M Y, Yang X, et al. MoCoGAN: Decomposing motion and content for video generation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1526-1535.
|
| 54 |
Ho J , Salimans T , Gritsenko A , et al. Video diffusion models[J]. Advances in Neural Information Processing Systems, 2022, 35, 8633- 8646.
|
| 55 |
Donahue C, McAuley J, Puckette M. Adversarial audio synthesis [C]//7th International Conference on Learning Representations, 2019.
|
| 56 |
Kumar K , Kumar R , De Boissiere T , et al. MelGAN: Generative adversarial networks for conditional waveform synthesis[J]. Advances in Neural Information Processing Systems, 2019, 14910- 14921.
|
| 57 |
Roberts A, Engel J, Raffel C, et al. A hierarchical latent vector model for learning long-term structure in music [C]//International Conference on Machine Learning, 2018: 4364-4373.
|
| 58 |
Phung H, Dao Q, Tran A. Wavelet diffusion models are fast and scalable image generators [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10199-10208.
|
| 59 |
Prenger R, Valle R, Catanzaro B. WaveGlow: A flow-based generative network for speech synthesis [C]//ICASSP, 2019: 3617-3621.
|
| 60 |
Yu L, Zhang W, Wang J, et al. SeqGAN: Sequence generative adversarial nets with policy gradient [C]//AAAI Conference on Artificial Intelligence, 2017, 31(1).
|
| 61 |
Bowman S R, Vilnis L, Vinyals O, et al. Generating sentences from a continuous space [C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016.
|
| 62 |
Gong S, Li M, Feng J, et al. DiffuSeq: Sequence to sequence text generation with diffusion models [C]//The 11th International Conference on Learning Representations, 2023.
|
| 63 |
Yuan H, Yuan Z, Tan C, et al. SeqDiffuSeq: Text diffusion with encoder-decoder transformers [EB/OL]. [2025-02-27]. arXiv: 2212.10325.
|
| 13 |
Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using real NVP [C]//5th International Conference on Learning Representations, 2017.
|
| 14 |
Kingma D P , Dhariwal P . Glow: Generative flow with invertible $1\times 1$ convolutions[J]. Advances in Neural Information Processing Systems, 2018, 10236- 10245.
|
| 64 |
Strudel R, Tallec C, Altché F, et al. Self-conditioned embedding diffusion for text generation [EB/OL]. [2025-02-27]. arXiv: 2211.04236.
|
| 65 |
Reid M, Hellendoorn V J, Neubig G. Diffuser: Discrete diffusion via edit-based reconstruction [EB/OL]. [2025-02-27]. arXiv: 2210.16886.
|
| 66 |
He Z F, Sun T X, Tang Q, et al. DiffusionBERT: Improving generative masked language models with diffusion models [C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 2023.
|
| 67 |
Ha D, Schmidhuber J. World models [EB/OL]. [2025-02-27]. arXiv: 1803.10122.
|
| 68 |
Chen J Y, Ganguly B, Xu Y, et al. Deep generative models for offline policy learning: Tutorial, survey, and perspectives on future directions [EB/OL]. [2025-02-27]. arXiv: 2402.13777.
|
| 69 |
Hu J, Sun Y, Huang S, et al. Instructed diffuser with temporal condition guidance for offline reinforcement learning [EB/OL]. [2025-02-27]. arXiv: 2306.04875.
|