运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (2): 71-80.doi: 10.15960/j.cnki.issn.1007-6093.2024.02.005

•   • 上一篇    下一篇

工件权重带限制的最小化最大加权完工时间的单机在线排序问题

徐娟年1, 马冉1,*(), 韩雯雯1, 张玉忠2   

  1. 1. 青岛理工大学管理工程学院, 山东青岛 266525
    2. 曲阜师范大学管理学院、运筹学研究院, 山东日照 276826
  • 收稿日期:2021-06-23 出版日期:2024-06-15 发布日期:2024-06-07
  • 通讯作者: 马冉 E-mail:sungirlmr@126.com
  • 基金资助:
    国家自然科学基金(11501171);国家自然科学基金(11771251);山东省自然科学基金(ZR2020MA028)

Single-machine online scheduling to minimize maximum weighted completion time with limited weights

Juannian XU1, Ran MA1,*(), Wenwen HAN1, Yuzhong ZHANG2   

  1. 1. School of Management Engineering, Qingdao University of Technology, Qingdao 266525, Shandong, China
    2. Institute of Operations Research, School of Management, Qufu Normal University, Rizhao 276826, Shandong, China
  • Received:2021-06-23 Online:2024-06-15 Published:2024-06-07
  • Contact: Ran MA E-mail:sungirlmr@126.com

摘要:

本文考虑了最小化最大加权完工时间的单机在线排序问题, 要求工件的权重在工件加工时间一定范围之内且工件的权重和工件加工时间具有一致性, 即$ ap_j\leq w_j\leq bp_j (a\geq\frac{\sqrt{5}-1}{2}b, b\geq a)$且若$ w_i>w_j$$ p_i\geq p_j$, 如果$ w_i=w_j$$ p_i=p_j$。工件以时间在线的方式到达, 只有工件$ J_j$在达到释放时间$ r_j$后, 决策者才知晓工件的基本信息, 如加工时间$ p_j$和权重$ w_j$。对于此问题, 首先利用对手法证明了其下界为$ 1+\frac{b}{b+a}$, 随后给出了竞争比为$ 1+\frac{b}{b+a}$的最好可能的在线算法。特别地, 当$ a=\frac{\sqrt{5}-1}{2}b$时, 该算法的竞争比为$ \frac{\sqrt{5}+1}{2}$

关键词: 单机, 在线排序, 在线算法, 加权完工时间

Abstract:

The setting we consider is nonpreemptive single machine online scheduling, with the objective to minimize the maximum weighted completion time of jobs. The weight of the job is not only limited strictly within the processing time compass of this job, but also agreeable with processing time of this job, i.e., $ ap_j\leq w_j\leq bp_j(a\geq\frac{\sqrt{5}-1}{2}b, b\geq a)$ and if $ w_i>w_j$, then $ p_i\geq p_j$. Especially, if $ w_i=w_j$, then $ p_i=p_j$. Significantly, there are irrelevant jobs arriving online over time and the knowledge of each job $ J_j$, such as its processing length $ p_j$ and weight $ w_j$, is not revealed for the scheduler until it is released at time $ r_j$. By means of adversary method, it is explicitly derived that the lower bound of the considered problem is $ 1+\frac{b}{b+a}$. Then we provide a best possible online algorithm with the competitive ratio of $ 1+\frac{b}{b+a}$. Moreover, the competitive ratio of this algorithm is $ \frac{\sqrt5+1}{2}$, when $ a=\frac{\sqrt{5}-1}{2}b$.

Key words: single machine, online scheduling, online algorithm, weighted completion time

中图分类号: