运筹学学报 ›› 2023, Vol. 27 ›› Issue (3): 96-108.doi: 10.15960/j.cnki.issn.1007-6093.2023.03.007

•   • 上一篇    下一篇

两种新的Toeplitz矩阵填充加速临近梯度算法

王川龙1,*(), 牛建华1, 申倩影1   

  1. 1. 太原师范学院数学系, 山西晋中 030619
  • 收稿日期:2021-05-06 出版日期:2023-09-15 发布日期:2023-09-14
  • 通讯作者: 王川龙 E-mail:clwang1964@163.com
  • 作者简介:王川龙, E-mail: clwang1964@163.com
  • 基金资助:
    国家自然科学基金(11371275);太原师范学院研究生教育创新项目(SYYJSJC-2016)

Two new accelerated proximal gradient algorithms for Toeplitz matrix completion

Chuanlong WANG1,*(), Jianhua NIU1, Qianying SHEN1   

  1. 1. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • Received:2021-05-06 Online:2023-09-15 Published:2023-09-14
  • Contact: Chuanlong WANG E-mail:clwang1964@163.com

摘要:

本文提出了两种改进的Toeplitz矩阵填充加速临近梯度算法,使迭代矩阵每一步都保持Toeplitz结构,从而降低了奇异值分解时间。在理论上,证明了新算法在一些合理条件下的收敛性。同时,数值实验表明,在Toeplitz矩阵填充问题中,新算法比加速临近梯度(APG)算法在时间上有明显减少。

关键词: 矩阵填充, Toeplitz矩阵, 加速临近梯度算法

Abstract:

In this paper, we propose two modified accelerated proximal gradient algorithms for Toeplitz matrix completion in which the iterative matrices keep the Toeplitz structure in each step to decrease SVD times. Furthermore, we prove the convergence of the new algorithms under some reasonal conditions. Finally, numerical experiments show that the new algorithms are much more effective than the accelerated proximal gradient (APG) algorithm for Toeplitz matrix completion in CPU times.

Key words: matrix completion, Toeplitz matrix, accelerated proximal gradient algorithm

中图分类号: