1 |
Amit Y, Fink M, Srebro N, et al. Uncovering shared structures in multiclass classification[C]//Processings of the 24th International Conference on Machine Learing, 2007: 17-24.
|
2 |
ArgyriouA,EvgeniouT,PontilM.Multi-task feature learing[J].Advances in Neural Information Processing Systems,2007,19,41-48.
|
3 |
MesbahiM,PapavassilopoulosG P.On the rank minimization problem over a positive semidefinite linear matrix inequality[J].IEEE Transactions on Automatic Control,1997,42(2):239-243.
doi: 10.1109/9.554402
|
4 |
BertalmioM,SapiroG,CasellesV,et al.Image inpainting[J].Computer Grapher,2000,34(9):417-424.
|
5 |
TomasiC,KanadeT.Shape and motion from image streams under orthography: a factorization method[J].International Journal of Computer Vision,1992,90(2):137-154.
|
6 |
CandèsE J,RechtB.Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,9(6):717-772.
doi: 10.1007/s10208-009-9045-5
|
7 |
Fazel M. Matrix rank minimization with applications[D]. Stanford: Stanford University, 2002.
|
8 |
Fazel M, Hindi H, Boyd S P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[C]//Proceedings of the American Control Conference, 2003: 2156-2162.
|
9 |
TohK C,YunS.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J].Pacific Journal of Optimization,2010,6(3):615-640.
|
10 |
MaS,GoldfarbD,ChenL.Fixed point and Bregman iterative methods for matrix rank minimization[J].Mathematical Programming,2011,128(1/2):321-353.
|
11 |
CaiJ F,CandèsE J,ShenZ.A singular value thresholding algorithm for matrix completion[J].SIAM Journal Optimization,2010,20(4):1956-1982.
doi: 10.1137/080738970
|
12 |
Lin Z, Chen M, Wu L, et al. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. 2010, arxiv: 1009.5055.
|
13 |
MukhexjeeB N,MaitiS S.On some properties of positive definite Toeplitz matrices and their possible applications[J].Linear Algebra with Applications,1988,102,211-240.
doi: 10.1016/0024-3795(88)90326-6
|
14 |
GrenanderU,SzegöG,KacM.Toeplitz forms and their applications[J].Physics Today,1958,11(10):38-38.
|
15 |
ChillagD.Regular representations of semisimple algebras, separable field extensions, group characters, generalized cirulants, and generalized cyclic codes[J].Linear Algebra with Applications,1995,218(3):147-183.
|
16 |
BunchJ.Stability of methods for solving Toeplitz systems of equations[J].SIAM Journal on Scientific and Statistical Computing,1985,6,349-364.
doi: 10.1137/0906025
|
17 |
KuT,KuoC.Design and analysis of Toeplitz preconditioners[J].IEEE Transactions on Signal Processing,1992,40(1):129-141.
doi: 10.1109/78.157188
|
18 |
AKaikeH.Block Toeplitz matrix inversion[J].SIAM Journal on Applied Mathematics,1973,24(2):234-241.
doi: 10.1137/0124024
|
19 |
WangC L,LiC.A mean value algorithm for Toeplitz matrix completion[J].Applied Mathematics Letters,2015,41,35-40.
doi: 10.1016/j.aml.2014.10.013
|
20 |
WangC L,LiC,WangJ.A modified augmented Lagrange multiplier algorithm for Toeplitz matrix completion[J].Advances in Computational Mathematics,2016,42(5):1209-1224.
doi: 10.1007/s10444-016-9459-y
|
21 |
WangC L,LiC.A structure-preserving algorithm for Toeplitz matrix completion (in Chinese)[J].Scienta Sinica Mathematica,2016,46,1-16.
doi: 10.1360/N012014-00278
|
22 |
ChenY,ChiY.Robust spectral compressed sensing via structured matrix completion[J].IEEE Transactions on Information Theory,2011,59,2182-2195.
|
23 |
CaiJ F,QuX,XuW,et al.Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction[J].Applied & Computational Harmonic Analysis,2016,41,470-490.
|
24 |
FazelM,PongT K,SunD,et al.Hankel matrix rank minimization with applications to system identification and realization[J].SIAM Journal on Matrix Analysis and Applications,2013,34,946-977.
doi: 10.1137/110853996
|
25 |
Cai J F, Liu S, Xu W. A fast algorithm for reconstruction of spectrally sparse signals in super-resolution[C]//Wavelets & Sparsity XVI. International Society for Optics and Photonics, 2015: 95970A.
|
26 |
CaiJ F,WangT,WeiK.Fast and provable algorithms for spectrally sparse signal reconstruction via low-rank Hankel matrix completion[J].Applied & Computational Harmonic Analysis,2019,
|
27 |
CaiJ F,WangT,WeiK.Spectral compressed sensing via projected gradient descent[J].SIAM Journal on Optimization,2018,28(3):2625-2653.
doi: 10.1137/17M1141394
|
28 |
ChenY X,ChiY J.Robust spectral compressed sensing via structured matrix completion[J].IEEE Transactions on Information Theory,2014,60(10):6576-6600.
doi: 10.1109/TIT.2014.2343623
|
29 |
LukF T,QiaoS.A fast singular value algorithm for Hankel matrices[J].Contemporary Mathematics,2003,
|
30 |
XuW,QiaoS.A fast SVD algorithm for square Hankel matrices[J].Linear Algebra and Its Applications,2008,428(2):550-563.
|
31 |
GolubG H,VanLoanC F.Matrix Computations[M].Baltimore:The Johns Hopkins University Press,1996.
|
32 |
Van LoanC.Computational Frameworks for the Fast Fourier Transform[M].Philadelphia:Society for Industrial and Applied Mathematics,1992:1-75.
|
33 |
Kailath T, Sayed A H. Fast reliable algorithms for matrices with structure[M]//Society for Industrial and Applied Mathematics, Philadelphia: University City Science Center Philadelphia, 1999.
|
34 |
WangC L,ZhangJ M.Strcuture-preserving thresholding algorithm based on F-norm for Hankel matrix completion (in Chinese)[J].Journal on Numerical Methods and Computer Applications,2017,39(1):60-72.
|
35 |
ZhangJ M,WangC L.Strcuture-preserving thresholding algorithm based on $l_{\infty}$-norm for Hankel matrix completion (in Chinese)[J].Acta Mathematicae Applicatae Sinica,2019,42(1):55-70.
|
36 |
BeckA,TebouleM.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].Society for Industrial and Applied Mathematics,2009,2(1):183-202.
|