1 |
Fragnelli V , Jurado I G , Naya L M . On shortest path games[J]. Mathematical Methods of Operations Research, 2000, 52 (2): 251- 264.
doi: 10.1007/s001860000061
|
2 |
Voorneveld M , Grahn S . Cost allocation in shortest path games[J]. Mathematical Methods of Operations Research, 2002, 56 (2): 323- 340.
doi: 10.1007/s001860200222
|
3 |
Pintér M , Radványi A . The Shapley value for shortest path games: a non-graph-based approach[J]. Central European Journal of Operations Research, 2013, 21 (4): 769- 781.
doi: 10.1007/s10100-012-0272-5
|
4 |
Rosenthal E C . Shortest path games[J]. European Journal of Operational Research, 2013, 224 (1): 132- 140.
doi: 10.1016/j.ejor.2012.06.047
|
5 |
Baïou M , Barahona F . An algorithm to compute the nucleolus of shortest path games[J]. Algorithmica, 2019, 81 (8): 3099- 3113.
doi: 10.1007/s00453-019-00574-9
|
6 |
Sprumont Y . Population monotonic allocation schemes for cooperative games with transferable utility[J]. Academic Press, 1990, 2 (4): 378- 394.
|
7 |
Grahn S , Voorneveld M . Population monotonic allocation schemes in bankruptcy games[J]. Annals of Operations Research, 2002, 109 (1-4): 317- 329.
|
8 |
Norde H , Moretti S , Tijs S . Minimum cost spanning tree games and population monotonic allocation schemes[J]. European Journal of Operational Research, 2004, 154 (1): 84- 97.
doi: 10.1016/S0377-2217(02)00714-2
|
9 |
Hamers H , Miquel S , Norde H . Monotonic stable solutions for minimum coloring games[J]. Mathematical Programming, 2014, 145 (1-2): 509- 529.
doi: 10.1007/s10107-013-0655-y
|
10 |
Chen X , Gao X , Hu Z , et al. Population monotonicity in newsvendor games[J]. Management Science, 2019, 65 (5): 2142- 2160.
|
11 |
Curiel I . Cooperative Game Theory and Applications: Cooperative Games Arising from Combinatorial Optimization Problems[M]. Dordrecht: Kluwer Academic Publishers, 1997.
|
12 |
Barron E N . Game Theory: An Introduction[M]. New York: Wiley-Interscience, 2013.
|
13 |
Biswas A K , Parthasarathy T , Ravindran G . Stability and largeness of the core[J]. Games and Economic Behavior, 2001, 34 (2): 227- 237.
doi: 10.1006/game.2000.0804
|
14 |
Shapley L S . Cores of convex games[J]. International Journal of Game Theory, 1971, 1 (1): 11- 26.
doi: 10.1007/BF01753431
|
15 |
Driessen T S H , Tijs S H . The τ-value, the core and semiconvex games[J]. International Journal of Game Theory, 1985, 14 (4): 229- 247.
doi: 10.1007/BF01769310
|
16 |
Izquierdo J M , Rafels C . Average monotonic cooperative games[J]. Games and Economic Behavior, 2001, 36 (2): 174- 192.
doi: 10.1006/game.1999.0820
|
17 |
Hokari T , Gellekom A . Population monotonicity and consistency in convex games: Some logical relations[J]. International Journal of Game Theory, 2003, 31 (4): 593- 607.
doi: 10.1007/s001820300141
|
18 |
Young P . Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14 (2): 65- 72.
doi: 10.1007/BF01769885
|
19 |
Kalai E , Zemel E . Generalized network problems yielding totally balanced games[J]. Operations Research, 1982, 30 (5): 998- 1008.
doi: 10.1287/opre.30.5.998
|
20 |
Kruś L , Bronisz P . Cooperative game solution concepts to a cost allocation problem[J]. European Journal of Operational Research, 2000, 122 (2): 258- 271.
doi: 10.1016/S0377-2217(99)00232-5
|
21 |
Taccari L . Integer programming formulations for the elementary shortest path problem[J]. European Journal of Operational Research, 2016, 252 (1): 122- 130.
doi: 10.1016/j.ejor.2016.01.003
|
22 |
Dutta B , Ray D . A concept of egalitarianism under participation constraints[J]. Econometrica, 1989, 57 (3): 615- 635.
doi: 10.2307/1911055
|
23 |
田丰, 张运清. 图与网络流理论[M]. 北京: 科学出版社, 2015.
|
24 |
谢政, 戴丽, 李建平. 博弈论[M]. 北京: 高等教育出版社, 2018.
|